
터크스 케이커스 에어비앤비의 솔저는 손님들이 아침에 일어나기를 기다렸다가 그들을 해변으로 안내하며 그들을 떠나지 않습니다.
터크스 케이커스 에어비앤비의 솔저는 손님들이 아침에 일어나기를 기다렸다가 그들을 해변으로 안내하며 그들을 떠나지 않습니다.
RT-2는 웹과 로봇 데이터에서 학습한 새로운 비전-언어-행동(VLA) 모델로, 이 지식을 일반화된 로봇 제어 명령으로 번역합니다.
AI 기술은 미래를 변화시킬 강력한 도구이며, 기후 변화와 지속 가능한 해결책을 찾는 데 어떻게 가장 효과적으로 활용할 수 있을까?
구글 딥마인드는 ICML 2023에서 인공지능 안전성, 적응성, 효율성을 탐구했다.
DeepMind와 구글 리서치가 발표한 논문에서는 의료 이미지의 정확한 해석을 위해 AI 시스템인 CoDoC를 제안했다. 이 시스템은 예측 AI 도구에 의존할지 의사에게 판단을 맡길지 학습한다.
신규 백서가 선진 AI의 기회를 관리하고 위험을 완화하는 데 도움이 될 수 있는 국제 기관의 모델과 기능을 조사합니다.
최근 AI의 발전을 활용하여 다양한 방법으로 도와줄 수 있는 로봇을 만들기 위해 자체 발전하는 AI 에이전트인 로보캣을 소개하는 논문 발표.
YouTube는 모든 사람에게 목소리를 듣게 하고 세상을 보여주는 데 기술과 연구를 활용하는 것이 중요하다.
구글 클라우드는 기업이 더 스마트한 비즈니스로 디지털 변혁할 수 있도록 지원하며, 클라우드 컴퓨팅, 데이터 분석, 최신 인공지능(AI) 및 기계 학습 도구를 제공합니다.
MuZero, AlphaZero, 그리고 AlphaDev가 장치들을 구동하는 컴퓨팅 생태계를 최적화하는 방법에 대해 알아봅니다.
AlphaDev가 발견한 새로운 알고리즘은 컴퓨팅의 기초를 변형할 것이다.
이 연구는 새로운 위협에 대응하기 위한 일반적인 모델을 평가하기 위한 프레임워크를 제안합니다.
11회 ICLR이 5월 1일부터 5일까지 루완다 키갈리에서 개최될 예정이며, 인공지능, 통계 및 데이터 과학, 머신 비전, 게임 및 로봇 과학 분야의 혁신적인 딥러닝 연구를 공유할 것.
철학적 관점에서 윤리적 AI를 위한 공정한 원칙을 도출하는 방법에 대해 탐구하고 있습니다.
구글 딥마인드와 구글 리서치 브레인 팀이 합류하여, AI가 인류가 직면한 가장 큰 문제를 해결하는 데 도움을 주는 세상으로 진전을 가속화할 것이다.
경쟁 프로그래밍에서 새로운 문제 해결과 새로운 기준 설정
인류 사회의 발전을 위해 소통과 협력은 중요했는데, 보드 게임은 상호작용과 소통을 모델링하고 조사하는 모래상자 역할을 한다. 최근 Nature Communications에 발표된 논문에서 인공 에이전트가 소통을 통해 보드 게임 Diplomacy에서 더 잘 협력할 수 있는 방법을 보여줌.
게임을 플레이하는 인공지능 시스템이 새로운 지평으로 발전했습니다.
NeurIPS는 인공지능 및 머신러닝 분야에서 세계 최대 규모의 학회로, 딥마인드는 다이아몬드 후원사로 참여하여 인공지능 및 머신러닝 커뮤니티에서의 연구 진전 교류를 돕고 있다. 딥마인드 팀은 35개의 외부 협업을 포함한 47편의 논문을 가상 패널과 포스터 세션을 통해 발표할 예정이다.
인공지능 연구자들은 현재 상황에 맞는 상호 작용의 미묘한 면을 포착할 수 있는 컴퓨터 코드를 작성하는 것이 불가능하다고 믿고 있다. 대신, 최신 머신러닝 연구자들은 이러한 상호 작용 유형에 대해 데이터로부터 학습하는 데 초점을 맞추었다. 비디오 게임 환경 내에서 인간 지시를 이해하고 안전하게 행동할 수 있는 에이전트를 빠르게 구축하기 위해 연구 프레임워크를 만들었다.
30년간의 컴퓨터 비전 연구를 활용하여 지식을 쌓아가는 방법을 학습합니다.
AI 파트너십과 함께 데이터 수집에 대한 책임있는 접근 방식 구축
수십만 명의 생명을 구할 수 있는 백신 개발
인공 지능의 중요한 부분인 지각은 센서를 통해 세상을 경험하는 과정이다. 이를 위해 실제 영상을 활용한 Perception Test가 소개되었는데, 로봇공학, 자율주행 자동차, 개인 비서, 의료 영상 등에서 중요한 역할을 한다.
인공지능이 원치 않는 목표를 추구하는 것을 방지하기 위해 새로운 매커니즘인 goal misgeneralisation (GMG)에 대해 연구하였다. GMG는 시스템이 원하는 목표를 올바르게 추상화하지 못하고 잘못된 목표를 추구하는 현상이다. 이는 명세 게이밍과 달리 올바른 명세로 훈련되어도 발생할 수 있다.
DeepMind이 Nature에 발표한 논문에서는 행렬 곱셈과 같은 기본 작업을 위한 혁신적이고 효율적이며 증명 가능한 알고리즘을 발견하는 인공지능 시스템인 AlphaTensor를 소개합니다. 이는 50년간의 수학적 문제를 해결하는 데 가장 빠른 방법을 찾는 데 도움이 됩니다. AlphaTensor는 AlphaZero를 기반으로 구축되었으며, 이 작업은 AlphaZero의 게임에서 수학 문제를 해결하기까지의 여정을 나타냅니다.
골이 부러지기 전 질병의 조기 징후 감지
단백질 돌연변이가 질병과 장애를 일으키는 메커니즘 이해에 도움
50,000년 전 멸종한 종을 연구하기 위한 도구 개발
Sparrow는 위험하고 부적절한 답변의 위험을 줄이면서 유용한 대화 에이전트로, 사용자와 대화하고 질문에 답변하며 필요할 때 Google을 사용하여 인터넷을 검색하여 답변을 제공하는 에이전트를 소개하는 논문이 최신입니다.
AI를 활용한 초기발병 파킨슨병 예측으로 새로운 치료법 개척.
DeepMind의 운영 원칙은 보급혜택 우선 및 추구하지 않는 연구 및 응용 분야를 정의하는 데에 기여했다. 이러한 원칙은 DeepMind의 결정에 중심 역할을 해왔으며, AI 분야의 변화와 성장에 따라 계속해서 개선되고 있다. 이러한 원칙들은 연구 주도 과학 기업으로서의 역할에 맞추어 설계되었으며, Google의 AI 원칙과 일관성이 있다.
DeepMind의 CBO인 Colin은 Alphabet과의 협업 및 윤리, 책임성, 안전성을 우리의 모든 활동에 통합하는 방법에 대해 논의합니다.
새 논문 ‘AI와 대화: 인간의 가치와 언어 모델 조정’은 인간과 인공 대화 에이전트 간의 성공적인 커뮤니케이션을 탐구하며 이러한 맥락에서 대화를 이끌어야 하는 가치에 대해 논의한다.
인간과 동물의 움직임을 활용하여 로봇에게 공을 드리블하고 시뮬레이션된 인간형 캐릭터에게 상자를 옮기고 축구를 시키는 방법을 연구했다.
구글 딥마인드는 Zindi와 협력하여 거북이 얼굴 인식 기술을 개발해 보존 노력을 지원하고 AI 참여를 촉진하는 프로젝트를 시작했다. Zindi의 경쟁에서 영감을 받아 실제 영향을 줄 수 있는 프로젝트를 선정했다.
안전하고 일치된 인공 일반 지능(AGI) 시스템을 구축하고자 하는 노력 속에서, 인공 에이전트의 동기를 추론할 수 있는 인과적 영향 다이어그램 (CID)이 중요한 역할을 한다. 훈련 설정을 에이전트 행동에 영향을 미치는 동기와 관련시킴으로써, CIDs는 에이전트를 훈련하기 전 잠재적 위험을 밝히고 더 나은 에이전트 디자인을 영감을 줄 수 있다. 그렇다면, 우리는 어떻게 알 수 있을까? CID가 훈련 설정의 정확한 모델인지를요.
레이시마니아시스 치료법을 찾기 위한 노력을 가속화하고 있습니다.
2015년 2월, 다니엘 그린은 집에서 4번 총에 맞고 죽음을 맞이했다. 처음에 전 부인인 에리카 산도발은 남편의 죽음과 관련이 없다고 부인했지만, 그 후 모든 것을 시인했다.
필라델피아에서 아멘트랙 열차 188호가 탈선하여 8명 사망, 200여 명이 부상을 입었습니다.
1974년 LA 타임스의 기사에서 전설적인 메리 픽퍼드를 그녀의 후반기에 다시 만나본다. 한때 할리우드의 가장 밝은 별이었던 “미국의 달콤한 여인”은 베버리힐스의 상징적인 저택에서 은둔 생활을 하며 거의 신화적인 존재로 변모했다.