
AWS에서 성숙한 생성형 AI 기반 설계하기
글에서는 성숙한 생성형 AI 기반의 개요를 제시하고 구성 요소를 탐구하며 종단간의 전망을 제시합니다. 다양한 운영 모델을 살펴보고 해당 기반이 그 한계 내에서 운영될 수 있는 방법을 탐구합니다. 마지막으로 기업이 진화 경로를 평가하는 데 도움이 되는 성숙도 모델을 제시합니다.
글에서는 성숙한 생성형 AI 기반의 개요를 제시하고 구성 요소를 탐구하며 종단간의 전망을 제시합니다. 다양한 운영 모델을 살펴보고 해당 기반이 그 한계 내에서 운영될 수 있는 방법을 탐구합니다. 마지막으로 기업이 진화 경로를 평가하는 데 도움이 되는 성숙도 모델을 제시합니다.
AWS LLM League의 게임화된 지원이 파트너들의 AI 개발 역량을 향상시키는 방법을 소개하며, 작은 언어 모델의 세밀한 조정이 특정 산업의 필요에 맞는 비용 효율적인 전문 솔루션을 제공하는 방법을 보여줍니다.
이 게시물에서는 LLM 마이그레이션 패러다임과 아키텍처를 소개하며, Amazon Bedrock를 사용하여 모델 평가, 프롬프트 생성 및 데이터 인식 최적화를 거친 지속적인 프로세스를 제시합니다.
이 게시물에서는 에이전트 개발 프로세스를 간소화하는 Langfuse 통합 솔루션인 오픈 소스 베드락 에이전트 평가 프레임워크를 소개했습니다. 이 평가 프레임워크가 어떻게 약학 연구 에이전트와 통합될 수 있는지를 보여주었습니다. 생물 표지자 질문에 대한 에이전트 성능을 평가하고 이를 Langfuse로 전송하여 질문 유형별 평가 지표를 볼 수 있었습니다.
이 기사는 Amazon Bedrock 에이전트를 활용하여 기업이 고급 오류 처리 도구와 자동 스키마 탐지를 통해 데이터베이스 쿼리 효율성을 향상시키는 확장 가능한 텍스트-SQL 솔루션을 구현하는 방법을 보여줍니다.