이 포스트에서는 Amazon Nova를 사용하여 도구 사용을 위한 모델 맞춤화(미세 조정)를 보여줍니다. 도구 사용 사례를 소개하고 데이터셋에 대한 세부 정보를 제공한 후, Amazon Nova 특정 데이터 형식 지정에 대해 안내하고 Amazon Bedrock의 Converse 및 Invoke API를 통해 도구 호출하는 방법을 보여줍니다. Amazon Nova 모델에서 기준선 결과를 얻은 후, 미세 조정 프로세스, 예비 처리량으로 호스팅된 미세 조정된 모델, 그리고 추론에 사용되는 미세 조정된 Amazon Nova 모델을 자세히 설명합니다.
이 게시물에서는 에이전트 개발 프로세스를 간소화하는 Langfuse 통합 솔루션인 오픈 소스 베드락 에이전트 평가 프레임워크를 소개했습니다. 이 평가 프레임워크가 어떻게 약학 연구 에이전트와 통합될 수 있는지를 보여주었습니다. 생물 표지자 질문에 대한 에이전트 성능을 평가하고 이를 Langfuse로 전송하여 질문 유형별 평가 지표를 볼 수 있었습니다.
AWS와 Cisco 팀이 기업급 SQL 생성의 과제를 해결하기 위한 새로운 방법론을 소개했다. NL2SQL 프로세스의 복잡성을 줄이면서 더 높은 정확성과 성능을 제공했다.
이 글에서는 Amazon SageMaker에서 오픈 소스 NER 및 LLM을 활용하여 AI 기반 문서 처리 플랫폼을 구축하는 방법에 대해 소개합니다.
Low-Rank Adaptation (LoRA)를 사용하여 동시성 모델 호스팅의 도전을 효과적으로 해결하는 방법을 살펴본다. LoRA 서빙과 LoRA 교환을 함께 사용하여 Amazon EC2 GPU 인스턴스로 LoRAX를 실행함으로써 조직이 세밀하게 조정된 모델 포트폴리오를 효율적으로 관리하고 제공하는 방법을 논의한다.
이 포스트는 비용 효율적이고 고성능 추론을 위해 AWS Inferentia2 인스턴스에 Mixtral 8x7B 언어 모델을 배포하고 제공하는 방법을 보여줍니다. Hugging Face Optimum Neuron을 사용한 모델 컴파일 및 Text Generation Inference (TGI) Container를 통해 LLMs를 배포하고 제공하는 방법을 안내합니다.
이 글에서는 Amazon Connect 내에서 Amazon Q를 활용하여 비즈니스 생산성을 높이는 방법을 소개하며, 연구, 데이터 분석, 사기 사례 보고 등을 가능하게 하는 통찰력 제공에 초점을 맞춥니다.
이 포스트는 오픈소스 다중 에이전트 프레임워크인 LangGraph를 Amazon Bedrock과 통합하는 방법을 보여준다. LangGraph와 Amazon Bedrock을 사용하여 그래프 기반 오케스트레이션을 활용하는 강력하고 대화형 다중 에이전트 응용 프로그램을 구축하는 방법을 설명한다.
이 기사는 Amazon Bedrock 에이전트를 활용하여 기업이 고급 오류 처리 도구와 자동 스키마 탐지를 통해 데이터베이스 쿼리 효율성을 향상시키는 확장 가능한 텍스트-SQL 솔루션을 구현하는 방법을 보여줍니다.
Amazon Q Business의 사용자 정의 플러그인을 활용하여 자연어 프롬프트를 통해 다양한 API와 상호 작용하는 챗봇을 구축하는 방법을 소개합니다. 사용자가 자연어 질의와 명령을 통해 AWS 인프라와 상호 작용할 수 있는 AIOps 챗봇을 구축하는 방법을 보여줍니다. 이 챗봇은 Amazon EC2 포트 및 Amazon S3 버킷 액세스 설정과 같은 작업을 처리할 수 있습니다.