USC 연구진은 LoRA를 이용해 비용 효율적인 강화 학습을 위한 Tina를 소개했습니다. Tina는 강력한 다단계 추론을 달성함에 있어 중요한 역할을 합니다. 과학 연구와 전략 계획과 같은 복잡한 문제 해결 분야에서 이러한 추론이 중요합니다. 모델들이 단계별 추론 데모를 통해 학습하는 지도 미세조정(SFT)을 포함한 전통적인 추론 기술을 향상시키는 것이 주요 과제입니다.
LLM 기반의 다중 에이전트 시스템은 계획, 추론, 도구 사용, 기억 능력을 가지며 챗봇, 코드 생성, 수학, 로봇학 등 다양한 응용 프로그램의 기반을 형성한다. 그러나 수동으로 설계되어 고인적인 비용과 확장성 제약으로 인해 중요한 도전에 직면했다. 그래프 기반 방법은 워크플로 디자인을 자동화하기 위해 노력해왔다.
언어 모델은 다양한 작업에서 뛰어난 성능을 보이지만 복잡한 추론은 계산 리소스와 전문 기술이 추가로 필요하여 도전적이다. 이에 따라 추론 시간 계산(ITC) 스케일링 방법이 발전되었는데, 이는 모델 출력을 향상시키기 위해 추가 계산 리소스를 할당하는 방법이다.
AgentA/B는 LLM 에이전트를 활용하여 실제 사용자 행동을 시뮬레이션하고 라이브 웹 플랫폼에서 전통적인 A/B 테스팅을 변형하는 확장 가능한 AI 시스템이다. 웹 인터페이스 설계 및 평가는 디지털 선도적인 세계에서 가장 중요한 작업 중 하나이며, 레이아웃, 요소 위치, 또는 탐색 논리의 변경은 사용자가 웹사이트와 상호 작용하는 방식에 영향을 줄 수 있다.
NVIDIA AI가 OpenMath-Nemotron-32B 및 14B-Kaggle을 발표했다. 이는 수학 추론을 위한 고급 AI 모델로, AIMO-2 대회에서 1위를 차지하고 새로운 기록을 세웠다.
긴 문맥을 다루는 데 LLM의 성능을 평가하는 것은 중요하며, 최근의 LLM인 Gemini-1.5, GPT-4, Claude-3.5, Qwen-2.5 등은 강력한 추론 능력을 유지하면서 문맥 길이의 한계를 늘렸다. 이러한 능력을 평가하기 위해 ∞Bench, LongBench, L-Eval과 같은 벤치마크가 개발되었다.

바이트댄스가 GUI 상호작용 및 게임 환경에 초점을 맞춘 최신 다중모달 에이전트 프레임워크인 UI-TARS-1.5를 공개했다. 화면 콘텐츠를 인식하고 대화형 작업을 수행할 수 있는 비전-언어 모델로 설계된 UI-TARS-1.5는 GUI 자동화 및 게임 추론 벤치마크 영역에서 지속적인 개선을 선보이며 선도적인 모델들을 능가하고 있다.
Reinforcement learning은 LLM의 추론 능력을 향상시키는 강력한 기법이지만, 숫자 계산이나 기호 조작이 필요한 작업에서 한계가 있다. ReTool은 이러한 한계를 극복하기 위한 도구-Augmented 강화 학습 프레임워크다.
대형 언어 모델(LLMs)은 복잡한 추론 작업을 처리하는 능력으로 주목받고 있으며, Letta와 UC 버클리의 연구자들은 유휴 상태에서 컴퓨팅을 확장하여 더 어려운 문제에 더 많은 리소스를 할당함으로써 더 높은 정확도를 달성하는 ‘슬립 타임 컴퓨트’를 소개했다.
대형 언어 모델(LLMs)은 방대한 양의 텍스트 데이터를 소화하면서 지식을 업데이트하는데 그들을 속일 수 있는 놀라운 데이터가 있을 수 있다. Google DeepMind는 이를 예측하고 줄이기 위한 새로운 기술을 소개하고 있다.
푸리에 신경 오퍼레이터(FNO)는 편미분 방정식 해결 오퍼레이터를 학습하는 강력한 도구이지만, 아키텍처에 대한 최적화가 부족하다. FFT – GEMM – iFFT의 계산 패턴이 더 많은 주목을 받고 있다. UC 리버사이드의 연구자들은 TurboFNO를 소개하여 PyTorch보다 최대 150% 속도 향상을 달성했다.

대형 언어 모델(Large language models, LLMs)은 질문 응답 및 구조적 추론과 같은 단일 에이전트 작업에서 놀라운 능력을 보여주었지만, 협업적으로 추론하는 능력은 여전히 미발달 상태입니다. Meta AI는 협업 추론자인 Coral을 소개하여 다수의 에이전트가 상호 작용하고 의견 충돌을 해결하며 해결책을 도출하는 능력을 향상시키는 AI 프레임워크를 특별히 설계했습니다.

NVIDIA가 CLIMB 프레임워크를 소개했다. 대규모 언어 모델이 커짐에 따라, 사전 학습 데이터 선택은 중요해졌다. CLIMB은 최적화된 데이터 혼합을 위한 프레임워크로, 이는 후속 성능에 영향을 미친다.
UC 버클리와 AI2 연구원들이 발표한 연구에 따르면, LLMs는 소량의 데이터로도 어려운 수학 문제를 해결할 수 있게 되었습니다. 최근 소규모 지도 파인튜닝 접근법들이 수학 문제 해결 능력을 현저히 향상시켰으며, 모델이 훈련 데이터를 넘어 일반화하는지 여부에 대한 근본적인 질문이 남아 있습니다.
IBM이 새로운 음성-텍스트(STT) 모델 Granite 3.3 8B를 발표했다. 이 모델은 자동 음성 인식(ASR) 및 자동 음성 번역(AST)에서 뛰어난 성능을 보여준다.