
Meta AI가 V-JEPA 2를 소개했다. 이는 인터넷 규모의 비디오에서 학습하고 강력한 시각적 이해, 미래 상태 예측, 제로샷 계획을 가능하게 하는 확장 가능한 오픈 소스 세계 모델이다.
Meta AI가 V-JEPA 2를 소개했다. 이는 인터넷 규모의 비디오에서 학습하고 강력한 시각적 이해, 미래 상태 예측, 제로샷 계획을 가능하게 하는 확장 가능한 오픈 소스 세계 모델이다.
AI 기반 개발에서 코딩 에이전트는 필수적인 협업자로 자리 잡았다. 이러한 독립적 또는 준자율적 도구는 코드를 작성, 테스트, 리팩토링하여 개발 주기를 현격히 가속화한다. 그러나 하나의 코드베이스에서 작업하는 에이전트 수가 증가함에 따라 의존성 충돌, 에이전트 간의 상태 누출, 각 에이전트의 작업 추적의 어려움도 커진다.
본 튜토리얼에서는 Riza의 안전한 Python 실행을 기반으로 강력한 다기능 AI 에이전트를 Google Colab에서 구축하는 방법을 안내합니다. Riza 자격 증명을 구성하여 검사 가능한 코드 실행을 가능하게하고, LangChain 에이전트에 Riza의 ExecPython 도구를 통합합니다.
최근의 LLM 발전은 복잡한 작업에서 뚜렷한 개선을 이끌어내었지만, 이 모델들의 단계적 추론 과정은 여전히 불분명하다. 대부분의 평가는 최종 답변 정확도에 초점을 맞추어 추론 과정을 숨기고 모델이 지식을 어떻게 결합하는지를 나타내지 않는다.
NVIDIA와 대학 연구진이 최근 논문에서, 큰 언어 모델이 더 긴 시퀀스 또는 병렬 추론 체인을 생성하기를 요구함에 따라, 추론 시간 성능이 토큰 수뿐 아니라 키-값(KV) 캐시의 메모리 풋프린트에 의해 심각하게 제한되는 문제를 다루었다.
LLM은 사전 훈련 데이터와 컴퓨팅 리소스의 스케일링을 통해 정확성을 향상시키지만, 한정된 데이터로 인해 대체 스케일링으로의 관심이 이동되었다. 최근에는 강화 학습 (RL) 후 훈련이 사용되었다. 과학적 추론 모델은 CoT 프롬프팅을 통해 초기에 답변 이전에 사고 과정을 내보내는 방식으로 성능을 향상시킨다.
AI-주도 개발이 소프트웨어 제작을 재정의함에 따라, “vibe 코딩”이 개발자가 원하는 대로 말하면 에이전트가 구축하는 패러다임 전환적 방법으로 등장했다. Andrej Karpathy가 만든 용어는 코드 중심적 워크플로우에서 자연어 기반 소프트웨어 프로토타이핑으로의 전환을 반영한다. 신뢰할만한 vibe 코딩 도구 목록을 소개한다.
도구 보강 에이전트의 등장으로 언어 모델이 외부 API 및 서비스를 활용하여 정확한 작업(산술 계산 또는 실시간 데이터 조회)을 수행할 수 있게 되었으며, 이는 언어 이해의 폭과 기능을 효과적으로 결합하고 있다.
대형 언어 모델에 의해 자주 사용되는 대형 추론 모델은 수학, 과학 분석 및 코드 생성의 고수준 문제를 해결하는 데 사용된다. 이중 모드 사고는 간단한 추론에 대한 신속한 응답과 복잡한 문제에 대한 신중하고 느린 사고를 모방한다. 이는 사람들이 직관적인 응답에서 복잡한 문제로 전환하는 방식을 반영한다.
Gemini 에이전트 네트워크 프로토콜을 소개하는 튜토리얼. Google의 Gemini 모델을 활용하여 AI 에이전트 간의 지능적인 협업을 가능하게 하는 프레임워크로, 분석가, 연구원, 합성기 및 검증자 역할을 가진 에이전트들 사이의 동적 통신을 용이하게 함.
대화형 AI 연구 보조기의 필요성, 최신 대형 언어 모델의 한계와 동적 AI 에이전트 스택 소개
모델 컨텍스트 프로토콜(MCP)은 2024년 11월에 Anthropic에 의해 소개되었으며, AI 모델이 JSON-RPC 2.0 기반의 프로토콜을 통해 외부 도구와 상호 작용할 수 있도록 하는 표준화된 안전한 인터페이스를 제공한다. Claude, Gemini, OpenAI에서 이미 MCP를 지원하고 있으며, 빠르게 채택되고 있다.
Mistral 에이전트에서 함수 호출을 활성화하는 방법을 살펴보는 튜토리얼. 함수의 입력 매개변수를 명확한 스키마로 정의하여 사용자 정의 도구를 에이전트에서 호출 가능하게 만들어 강력하고 동적인 상호작용을 가능하게 함. AviationStack API를 사용하여 실시간 항공편 상태를 검색.
본 튜토리얼에서는 SerpAPI의 Google 검색 기능과 Google Gemini-1.5-Flash 모델의 기능을 결합하여 Google Colab 노트북 내에서 고급 연구 및 분석 워크플로우를 생성하는 방법을 보여줍니다. AdvancedSerpAPI Python 클래스를 정의함으로써 사용자는 일반 웹 결과, 뉴스 기사, 이미지 등을 다루는 향상된 검색 방법에 액세스할 수 있습니다.
이 튜토리얼에서는 LangGraph와 Gemini 1.5 Flash를 사용하여 다단계 지능형 쿼리 처리 에이전트를 구축하는 방법을 보여줍니다. 각 노드는 라우팅, 분석, 연구, 응답 생성 및 유효성 검사로 구성된 목적 노드 시리즈를 통해 들어오는 쿼리를 처리합니다.
NVIDIA는 ProRL을 소개하며 장기간 강화학습이 언어 모델의 새로운 추론 능력을 발휘하고 일반화를 향상시킨다. 최근 추론 중심 언어 모델의 발전으로 AI에서 시험 시간 계산의 규모가 커졌다. 강화학습은 추론 능력을 향상시키고 보상 조작 함정을 완화하는 데 중요하다. 하지만 기본 모델에서 새로운 추론 능력을 제공하는지 아니면 기존 솔루션의 샘플링 효율을 최적화하는 데 도움을 주는지에 대한 논쟁이 남아있다.
파리 기반의 H 회사가 Agentic AI를 현실로 구현하기 위해 3가지 주요 단계를 발표했다. Runner H 공개 베타 버전과 함께 Holo-1과 Tester H도 공개되었다.
Mistral AI가 기업 소프트웨어 개발 환경에 맞춘 AI 코딩 어시스턴트인 Mistral Code를 발표했다. 이 릴리스는 Mistral이 프로페셔널 개발 파이프라인에서의 제어, 보안 및 모델 적응성에 대응하고자 하는 의지를 보여준다. Mistral Code는 기존의 AI 코딩 도구에서 관측된 주요 제약 사항을 대상으로 한다.
NVIDIA가 Llama Nemotron Nano VL을 소개했다. 이는 문서 수준 이해 작업에 효율적이고 정확한 비전-언어 모델(VLM)로, 복잡한 문서 구조의 정확한 구문 분석이 필요한 애플리케이션을 대상으로 한다.
이 튜토리얼에서는 Tavily와 구글 Gemini AI를 활용한 고급 대화형 웹 인텔리전스 에이전트를 소개한다. 웹 페이지에서 구조화된 콘텐츠를 추출하고 AI 기반 분석을 수행하여 통찰력 있는 결과를 제공하는 스마트 에이전트를 구성하고 사용하는 방법을 배운다.
야н덱스가 Yambda를 공개하여 추천 시스템 연구 및 개발을 가속화하는데 기여했다. 이 데이터셋은 약 50억 건의 익명 사용자 상호 작용 이벤트를 제공하며 학술 연구와 산업 규모 응용 프로그램 간의 간극을 줄이는 데 도움이 된다.
Diffusion 기반 대형 언어 모델은 전통적인 자기 회귀 모델에 대안으로 탐구되고 있으며, 동시 다중 토큰 생성의 잠재력을 제공한다. 그러나 이러한 모델은 경쟁력 있는 추론을 제공하는 데 어려움을 겪는다.
LangChain, Gemini 2.0 Flash 및 Jina Search 도구를 통합하여 지능형 AI 어시스턴트를 구축하는 방법을 보여주는 튜토리얼. 강력한 대형 언어 모델과 외부 검색 API의 기능을 결합하여 최신 정보 및 인용을 제공하는 어시스턴트를 생성함.
데스크톱 커맨더 MCP 서버는 MCP 파일 시스템 서버를 기반으로 한 강력한 도구로, 모든 개발 작업을 하나의 채팅 인터페이스로 통합해줍니다. 파일 검색, 편집, 관리, 터미널 명령 실행, 프로세스 제어 등을 데스크톱에서 Model Context Protocol (MCP)을 사용하여 직접 수행할 수 있습니다.
Enigmata의 새로운 훈련 방법은 LRM을 사용하여 RL로 훈련된 대규모 추론 모델이 수학, STEM 및 코딩과 같은 복잡한 추론 작업에서 높은 성능을 보이지만, 순수한 논리 추론 기술이 필요한 다양한 퍼즐 작업을 완료하는 데 어려움을 겪는 문제에 대한 획기적인 성과를 이루고 있습니다.
BOND의 최신 보고서는 2025년 5월의 인공지능 트렌드를 소개하며, AI 기술의 현재 상태와 급속한 발전에 대한 데이터 기반 스냅샷를 제시한다. 보고서는 AI 채택 속도, 기술적 향상, 시장 영향의 전례없는 속도를 강조하며, 주요 결과들을 살펴보고 있다.
이 튜토리얼에서는 Python을 사용하여 에이전트 통신 프로토콜 (ACP)을 구현하고, 구글의 Gemini API를 활용하여 유연하고 ACP 호환성있는 메시징 시스템을 구축합니다. google-generativeai 라이브러리의 설치 및 구성부터 시작하여, 핵심 추상화, 메시지 유형, 수행, ACPMessage 데이터 클래스 등을 소개하며 에이전트 간 통신을 표준화합니다.
Yandex가 세계 최대 규모의 이벤트 데이터셋 ‘Yambda’를 공개했다. 이 데이터셋은 약 50억 건의 익명 사용자 상호 작용 이벤트를 제공하여 학술 연구와 산업 규모 응용 사이의 간극을 줄이는 데 기여한다.
스탠포드 대학 연구진이 Biomni를 소개했다. 이는 생명과학 분야에서 다양한 작업과 데이터 유형에 걸쳐 자동화를 위한 AI 에이전트로, 질병 메커니즘 발견, 신약 타깃 식별, 효과적인 치료법 개발을 통해 인간 건강을 발전시키는 빠르게 발전하는 분야에 활용된다.
DeepSeek가 R1 추론 모델의 업데이트 버전인 DeepSeek-R1-0528을 출시했다. 이번 업데이트로 모델은 수학, 프로그래밍, 일반 논리 추론 분야에서 능력을 향상시켰으며, 주요 모델인 OpenAI의 o3 및 Google의 Gemini 2.5 Pro과의 경쟁력을 갖추게 되었다.
Mistral은 AI 에이전트 개발을 용이하게 하는 Agents API를 소개했다. Python 코드 실행, 이미지 생성, RAG 수행 등 다양한 작업을 수행할 수 있는 AI 에이전트를 개발하기 위한 프레임워크로, 대형 언어 모델이 여러 도구와 데이터 원본과 상호 작용할 수 있는 환경을 제공한다.
본 튜토리얼에서는 Google의 Gemini 모델 위에 구축된 Agent2Agent 협업 프레임워크를 구현한다. 데이터 과학자, 제품 전략가, 위험 분석가 및 창의적 혁신가까지 다양한 AI 페르소나를 만드는 과정을 안내하며, 이들 에이전트들이 구조화된 메시지를 교환하여 복잡한 실제 문제에 대처하는 방법을 보여준다.
NVIDIA가 Llama Nemotron Nano 4B를 공개했는데, 이는 과학 작업, 프로그래밍, 심볼릭 수학, 함수 호출 및 명령어 따르기에 강력한 성능과 효율성을 제공하면서 엣지 배포에 적합한 오픈 소스 추론 모델이다. 40억 개의 파라미터로 높은 정확도를 달성하며, 비교 모델 대비 최대 50% 높은 처리량을 달성했다.
LangChain의 ReAct 에이전트 프레임워크와 Anthropic의 Claude API를 통합하여 Python 코드를 생성하고 라이브로 실행하여 결과를 캡처하는 종단간 솔루션 구축 방법에 대한 튜토리얼.
NVIDIA의 인공지능이 강화 학습을 통해 수학 및 코드 추론을 발전시키는 AceReason-Nemotron을 소개했다. AI 시스템의 추론 능력은 중요한 구성 요소이며, 최근 대규모 강화 학습을 통해 추론 모델을 구축하는 데 흥미가 커지고 있다.
마이크로소프트가 NLWeb을 출시했다. 이 프로젝트는 모든 웹사이트를 자연어 인터페이스를 통해 AI 기반 앱으로 쉽게 변환할 수 있게 해준다. 기존 솔루션들은 중앙집중식이거나 기술적 전문 지식이 필요한데, 이로 인해 개발자들이 지능형 에이전트를 구현하는 데 제약이 생겼다.
LangGraph와 Claude를 사용하여 다양한 작업에 최적화된 강력한 멀티툴 AI 에이전트를 만드는 포괄적인 튜토리얼. 수학 계산, 웹 검색, 날씨 조회, 텍스트 분석, 실시간 정보 검색 등을 포함한 다양한 작업에 최적화된 AI 에이전트를 만드는 과정을 소개하며, 설치를 간편화하여 초보자도 쉽게 설정할 수 있도록 함.
Microsoft의 AutoGen 프레임워크를 사용하여 개발자들이 최소한의 코드로 복잡한 다중 에이전트 워크플로우를 조율하는 방법을 보여줌. AutoGen의 RoundRobinGroupChat 및 TeamTool 추상화를 활용하여 연구원, 사실 확인자, 비평가, 요약가, 편집자 등 전문 보조자들을 “DeepDive” 도구로 완벽하게 조합할 수 있음.
Gemma 3n은 실시간 장치 사용을 위한 소형이면서 고효율적인 다중 모달 AI 모델로, 지능을 기기에 직접 통합함으로써 빠른 응답 속도를 제공하고 메모리 요구를 줄이며 사용자 프라이버시를 강화한다.
모델 컨텍스트 프로토콜 (MCP)은 AI 모델을 더 넓은 소프트웨어 생태계와 통합하는 데 중심 역할을 하고 있다. Anthropic이 개발한 MCP는 언어 모델이나 자율 에이전트가 REST API, 데이터베이스 쿼리, 파일 시스템 작업 또는 하드웨어 제어를 찾고 호출하는 방식을 표준화한다. 각 기능을 자체 설명하는 “도구”로 노출함으로써 […]
Marktechpost AI 미디어가 2025년 Agentic AI 및 AI 에이전트 보고서를 발표했습니다. 이 보고서는 AI 에이전트의 아키텍처, 프레임워크 및 배포 전략을 탐구하며, 미래를 형성하는 기술적으로 엄밀한 내용을 제공합니다. 보고서는 추론이 가능한 모델, 메모리 프레임워크 및 조정을 기반으로 한 증가하는 생태계를 탐색합니다.
대형 언어 모델은 이제 텍스트 생성 이상의 평가 및 심사 작업에 사용되며, 다른 언어 모델의 출력을 평가하는 “언어 모델로서의 판사”로 확장되었습니다. 이러한 평가는 강화 학습 파이프라인, 벤치마크 테스트 및 시스템 정렬에서 중요하며, 이러한 판사 모델은 내부적인 사고 과정 추론에 의존합니다.
구글이 개발한 MedGemma는 의료 텍스트와 이미지 이해를 위해 훈련된 모델 스위트로, Gemma 3 아키텍처 기반으로 구축되었다. 의료 이미지와 텍스트 데이터의 통합 분석을 필요로 하는 의료 애플리케이션 개발자들에게 견고한 기반을 제공한다.
Unsloth AI는 4비트 양자화와 LoRA 기술을 활용하여 최신 모델인 Qwen3-14B를 손쉽고 빠르게 세밀하게 조정할 수 있게 해준다. 본 튜토리얼에서는 이를 실제로 구현하는 방법을 안내한다.
RAG는 모델 재교육 없이 응답을 가능케 하지만, 현재의 평가 프레임워크는 답변 가능한 질문들에 대한 정확성과 관련성에 초점을 맞추고, 부적절하거나 답변할 수 없는 요청을 거부하는 중요한 능력을 간과한다. 이로 인해 실제 응용 프로그램에서 부적절한 응답은 오인 또는 피해로 이어질 수 있음.
최근 LLMs의 발전으로 복잡한 추론 작업을 수행하고 검색 엔진과 같은 외부 도구를 효과적으로 사용하는 잠재력이 드러났다. 그러나 내부 지식 대신 검색을 언제 의존해야 하는지 모델에 스마트한 결정을 내릴 수 있도록 가르치는 것은 여전히 중요한 과제다. 단순한 프롬프트 기반 방법은 모델이 도구를 활용하도록 안내할 수 있지만, LLMs는 여전히 어려움을 겪고 있다.
대규모 데이터셋으로 훈련된 언어 모델은 언어 이해 및 생성 도구로 두드러지며, 상호 작용 환경에서 의사 결정 요소로 작동할 수 있다. 그러나 행동 선택이 필요한 환경에 적용될 때 이러한 모델은 내부 지식과 추론을 활용하여 효과적으로 행동하기를 기대된다. 그러나 LLMs는 이를 실현하기 어렵다. Google DeepMind 연구원들은 강화 학습 세밀 조정을 사용하여 이러한 간극을 메우려고 한다.
이 튜토리얼에서는 Tavily Search API, Chroma, Google Gemini LLMs, 및 LangChain 프레임워크의 강점을 결합하여 강력하고 지능적인 질의응답 시스템을 구축하는 방법을 소개합니다. Tavily를 통한 실시간 웹 검색, Chroma 벡터 저장소를 활용한 의미론적 문서 캐싱, 그리고 Gemini 모델을 통한 문맥적 응답 생성이 포함됩니다.
LM 에이전트의 최근 발전은 복잡한 실제 과제 자동화에 유망한 잠재력을 보여주고 있음. 이러한 에이전트는 일반적으로 API를 통해 작업을 제안하고 실행하여 소프트웨어 공학, 로봇공학, 과학 실험 등의 응용 프로그램을 지원함. 이러한 과제가 더 복잡해지면 LM 에이전트 프레임워크는 다중 에이전트, 다단계 검색, 맞춤형 지원을 포함하도록 진화해왔음.
대화형 인공지능은 사용자 요구가 점진적으로 드러나는 동적 상호작용을 가능하게 하는데 초점을 맞추고 있습니다. Microsoft와 Salesforce 연구자들이 발표한 연구에 따르면, 대화형 인공지능 모델인 LLMs는 실제 대화에서 어려움을 겪고 멀티턴의 미정의 작업에서 39%의 성능 저하가 있습니다.
Windsurf가 SWE-1을 발표하며 AI와 소프트웨어 엔지니어링의 깊은 융합을 시사했다. SWE-1은 전체 소프트웨어 개발 수명주기를 위해 특별히 설계된 최초의 AI 모델 패밀리로, 전통적인 코드 생성 모델과는 달리 실제 소프트웨어 엔지니어링 워크플로우를 지원하며 미완성 코드 상태부터 다중 표면 처리까지 다룬다.
OpenAI가 ChatGPT에 통합된 클라우드 기반 소프트웨어 엔지니어링 에이전트 Codex를 소개했습니다. 기존의 코딩 어시스턴트와 달리 Codex는 자동 완성 도구뿐만 아니라 코드 작성, 디버깅, 테스트 실행 등의 프로그래밍 작업을 자율적으로 수행할 수 있는 클라우드 기반 에이전트 역할을 합니다.
Hugging Face가 Model Context Protocol (MCP)에 대한 무료 오픈 소스 코스를 출시했습니다. 이 코스는 대규모 언어 모델과 외부 데이터 소스 및 도구를 통합하는 데 도움이 되는 MCP를 개발자와 AI 전문가들에게 제공하여 더 맥락에 맞는 AI 에이전트 및 애플리케이션을 구축하는 데 필요한 지식과 기술을 제공합니다.
Tsinghua 대학 및 ModelBest 연구진이 Ultra-FineWeb이라는 트리리언 토큰 데이터셋을 발표했다. 이 데이터셋은 LLM의 정확도를 향상시켜주며, 모델 기반 필터링을 통해 고품질 샘플을 식별하는 방법을 사용한다.
SimilarWeb의 ‘AI 글로벌 보고서: 생성 AI에서의 글로벌 섹터 트렌드’는 디지털 업무 방식을 재정의하는 생성 AI로 인해 사용자 참여 패턴이 변화하는 것을 종합적으로 보여줍니다. 코딩 에이전트의 현저한 성장, EdTech의 혁신적 영향, 그리고 법률 AI 플랫폼의 예상치 못한 하락을 강조합니다.
Rime은 사람들이 실제로 말하는 방식을 반영하는 음성 모델을 구축하고 있는데, 최근에 공개한 Arcana와 Rimecaster는 실용적인 도구로 설계되었다.
PwC는 “Agentic AI – GenAI의 새로운 지평”라는 최신 집행부 안내서에서, 자율적인 의사 결정과 문맥 인식 상호작용이 가능한 Agentic 인공지능에 대한 전략적 접근 방식을 제시한다. 이러한 시스템은 기관의 운영 방식을 재구성할 것으로 예상되며, 전통적인 소프트웨어 모델에서 조정된 모델로 전환될 것이다.
MCP-Use는 모든 LLM을 어떤 MCP 서버에 연결하여 웹 브라우징, 파일 작업 등의 도구 접근을 제공하는 오픈 소스 라이브러리다. 이 튜토리얼에서는 langchain-groq와 MCP-Use의 내장 대화 기억을 사용하여 도구와 상호 작용할 수 있는 간단한 챗봇을 구축한다.
LightOn AI가 GTE-ModernColBERT-v1을 발표했다. 이 모델은 토큰 수준의 의미 검색을 통해 장문 문서 검색에 탁월한 성능을 보여준다. 이는 키워드 기반 방법보다 더욱 효과적인 사용자 의도에 부합하는 결과를 제공한다.
자율 시스템이 점점 더 큰 언어 모델 (LLM)을 추론, 계획 및 실행에 활용함에 따라, 능력의 병목 현상이 아닌 의사 소통에서 병목 현상이 발생했습니다. LLM 에이전트는 지침을 구문 분석하고 도구를 호출할 수 있지만, 서로 확장 가능하고 안전하며 모듈식으로 상호 운용하는 능력은 심각하게 제한됩니다.
Tsinghua 대학의 ‘Absolute Zero’는 외부 데이터 없이 LLM을 훈련시키는데 성공하였다. 현재의 RLVR 작업은 규모 확장 문제에 직면하고 있지만, ‘Absolute Zero’는 중간 추론 단계를 모방하는 대신 결과 기반 피드백에 의존하여 추론 능력을 향상시켰다.
AI 모델은 수학 문제 해결, 논리적 문장 해석, 기업 의사 결정 지원과 같은 복잡한 작업을 처리해야 합니다. 이를 위해 수학적 추론, 과학적 이해, 고급 패턴 인식을 통합하는 것이 필요합니다. 실시간 응용 프로그램에서 지능형 에이전트에 대한 수요가 계속되는 가운데, 코딩 보조 도구와 비즈니스 자동화 도구가 포함됩니다.
OpenAI가 o4-mini 추론 모델에 Reinforcement Fine-Tuning (RFT)을 출시했는데, 이는 전문화된 작업에 맞게 기초 모델을 맞춤화하는 강력한 새로운 기술을 소개했다. RFT는 강화 학습의 원칙에 기반을 두고 있으며, 조직이 사용자 정의 목표와 보상 함수를 정의할 수 있어 모델이 향상되는 방식에 대해 상세한 제어를 제공한다.
Meta AI가 출시한 LlamaFirewall은 AI 에이전트의 보안 위험에 대응하기 위해 시스템 수준의 보안 계층을 제공하는 오픈 소스 가드레일 시스템이다.
Hugging Face가 nanoVLM을 출시했다. 이는 750줄의 코드로 비전-언어 모델을 처음부터 학습할 수 있는 PyTorch 기반의 간결하고 교육적인 프레임워크다.
MCP는 AI 에이전트가 일관된 인터페이스를 통해 외부 서비스와 상호 작용할 수 있는 신흥 오픈 표준이다. API마다 사용자 정의 통합을 작성하는 대신, MCP 서버는 클라이언트 AI가 동적으로 발견하고 호출할 수 있는 일련의 도구를 노출한다. 이러한 분리는 API 제공업체가 진화할 수 있음을 의미한다.
Transformer 아키텍처를 기반으로 한 LLM은 긴 문맥 입력을 처리할 때 이차 복잡도로 인해 확장에 어려움을 겪는다. RWKV와 같은 선형 아키텍처는 이 문제를 해결하나, 긴 문맥을 이해하는 데 어려움을 겪는다. RWKV-X는 희소 어텐션과 순환 메모리를 결합하여 선형 복잡도로 1백만 토큰 디코딩을 효율적으로 가능케 한다.
MCP 이전에 LLM은 외부 도구에 액세스하기 위해 임시적이고 모델별 통합에 의존했다. ReAct, Toolformer, LangChain, LlamaIndex 등 다양한 접근 방식이 소개되었으며 MCP는 AI 에이전트 도구 호출을 모델 간에 표준화, 간단화하고 미래에 대비하는 역할을 한다.
대형 언어 모델이 다양한 작업에서 놀라운 추론 능력을 보여주고 있으며, 강화 학습은 그들의 심층 사고 능력을 개선하는 중요한 메커니즘으로 작용합니다. 이 연구는 수학적 추론 및 코딩 영역에서의 강화 학습 기술의 성공을 보여주었지만, 이를 넓은 추론 맥락으로 확장하는 것이 중요합니다.
IBM은 그랜ite 4.0 패밀리의 최소 구성원인 그랜ite 4.0 Tiny 미리보기를 소개했다. Apache 2.0 라이선스로 출시된 이 콤팩트 모델은 효율성, 투명성, 성능 사이의 균형을 잡아 긴 문맥 작업 및 지시 따르기 시나리오에 최적화되었다.
최근 LLMs의 발전으로 OpenAI-o1, DeepSeek-R1, Kimi-1.5 등이 복잡한 수학적 추론 작업에서 성능을 크게 향상시켰다. 규칙 기반 보상을 사용하는 강화 학습은 이러한 개선에 중요한 역할을 한다. 최종 결과물을 향상시키는 RLVR은 모델의 문제 해결 방법이 올바른지를 나타내는 바이너리 신호를 일반적으로 사용한다.
MCP와 Zapier AI의 파워를 이용하여 복잡한 코딩 없이 Cursor에서 반응형 이메일 에이전트를 구축하는 방법을 배웁니다. MCP 커넥터를 구성하여 Cursor와 Zapier AI를 연결하고 Gmail 계정을 연결하며, 읽기, 검색, 전송을 위한 의도를 정의합니다.
AI 에이전트가 실험적 시스템에서 상용 규모 응용프로그램으로 전환되면서 그들의 증가하는 자율성은 새로운 보안 도전 과제를 도입하고 있습니다. Palo Alto Networks의 Unit 42가 발표한 “AI 에이전트가 여기에 있습니다 – 위협도 함께”라는 포괄적인 보고서에서, 오늘날의 에이전틱 아키텍처는 혁신에도 불구하고 다양한 공격에 취약하며, 대부분 이는 […]
ELIZA의 간단한 규칙 기반 시스템에서 현재의 정교한 플랫폼으로 대화형 AI가 발전해왔다. 이 과정은 80년대부터 90년대의 스크립트 봇, 2010년대의 Rasa와 같은 ML-규칙 하이브리드 프레임워크를 거쳐 2020년대의 혁명적인 대형 언어 모델로 이어져 자연스러운 대화를 가능케 했다. 현재는 Parlant와 같은 최첨단 대화 모델링 플랫폼이 주류다.
이 튜토리얼에서는 Fireworks AI의 기능을 활용하여 LangChain과 함께 지능적인 도구 기능을 갖춘 에이전트를 구축하는 방법을 살펴볼 것이다. langchain-fireworks 패키지 설치부터 Fireworks API 키 구성, 높은 성능의 llama-v3-70b-instruct 모델을 사용한 ChatFireworks LLM 인스턴스 설정, LangChain의 에이전트 프레임워크와 통합까지 진행할 것이다.
대형 언어 모델 에이전트가 기업 및 연구 생태계 전반에 걸쳐 주목을 받는 가운데, 에이전트들의 통신 역량을 제한하는 표준화된 프로토콜의 부재로 인해 커뮤니케이션 병목 현상이 발생했다. 이로 인해 에이전트들의 상호 조정 능력 및 외부 도구와의 인터페이스가 제약을 받고 있다.
DeepSeek-Prover-V2는 공식 이론 증명을 위해 설계된 대형 언어 모델로, 서브 골 분해와 강화 학습을 활용한다. 수학적 추론은 강력한 논리 일관성을 요구하는데, 이 모델은 Lean, Coq, Isabelle과 같은 증명 어시스턴트의 역할을 한다.
Salesforce AI 연구가 더 지능적이고 신뢰할 수 있으며 다재다능한 AI 에이전트를 구축하기 위한 포괄적인 로드맵을 제시했습니다. 이 최근 이니셔티브는 현재 AI 시스템의 기초적인 한계를 해결하기 위해 초점을 맞추고 있으며, 특히 불일치한 작업 성능, 강건성의 부족, 그리고 복잡한 기업 워크플로에 적응하는 데 어려움이 있는 부분에 초점을 맞추고 있습니다.
Meta AI가 ReasonIR-8B를 소개했다. 이는 효율성과 RAG 성능을 최적화한 추론 중심의 검색기다. 현재 대부분의 검색기는 짧은 사실성 질문 데이터셋으로 훈련되어 있어 복잡한 다단계 추론 작업에 대한 정보를 검색하는 것이 여전히 어려운 도전으로 남아있다.
Dappier AI의 실시간 검색 및 추천 도구를 활용하여 대화형 애플리케이션을 향상시키는 방법을 배우는 튜토리얼. RealTimeSearchTool과 AIRecommendationTool을 결합하여 웹에서 최신 정보를 조회하고 사용자 정의 데이터 모델에서 개인화된 기사 제안을 제공할 수 있음.
알리바바가 Qwen2.5-Omni-3B를 발표했다. 이 모델은 텍스트, 이미지, 오디오, 비디오 등을 포함한 시스템을 가능하게 하는 다중 모달 기반 모델로, VRAM 사용량이 50% 감소하고 거의 7B 모델 성능을 보여준다.
대형 언어 모델은 정보를 유지하는 데 어려움을 겪지만, Mem0는 장기적인 참여가 필요한 응용 프로그램에 통합될 때 더욱 중요해집니다. Mem0는 구조적인 기억을 유지하며 여러 세션에 걸쳐 정보를 지속적으로 보관하는 확장 가능한 메모리 아키텍처입니다.
2025년, AI는 창업 기업이 구축, 운영 및 경쟁하는 방식을 혁신하고 있습니다. 구글의 ‘미래 AI: 창업을 위한 전망’ 보고서는 인프라 리더, 창업 창립자 및 벤처 캐피탈 파트너의 통찰을 바탕으로 종합적인 로드맵을 제시합니다. AI는 접근성이 높아지고 있지만 신중한 응용과 장기적인 관점이 속도보다 중요하다는 실용적인 메시지를 전합니다.
exa-mcp-server와 Claude Desktop의 파워를 활용하여 LinkedIn 페이지에 프로그래밍적으로 액세스하는 방법을 배웁니다. Model Context Protocol의 가벼운, 고성능 구현을 제공하는 exa-mcp-server는 Claude Desktop이 HTTP 요청을 발행하고 필요에 따라 원시 HTML 또는 구조화된 데이터를 반환할 수 있게 합니다.
브리스톨 대학과 iGent AI 연구진이 자체 코드와 성능을 반복적으로 향상시키는 SICA(자체 개선 코딩 에이전트)를 제안했다. 현재 대부분의 에이전트 시스템은 고정된 수동 조작 전략에 의존하고 있어 새로운 작업과 환경에 적응하는 능력이 제한되는데, SICA는 이러한 제한을 극복하고 있다.
본 튜토리얼에서는 Gemini를 사용하여 사용자 정의 MCP 클라이언트를 구현하는 방법을 안내합니다. 이를 통해 AI 애플리케이션을 MCP 서버에 연결하여 프로젝트를 강화하는 강력한 능력을 얻을 수 있습니다.
LLMs와 추론 작업에 더 많은 계산을 활용하기 위해 고품질의 프로세스 보상 모델(PRMs)이 필요하다. 이 모델은 문제-해결 쌍에 점수를 매겨 해결책이 올바른지 나타내며, 판별적 분류기로 구현되어 왔다. 그러나 이러한 모델은 인간 주석, 골드 단계별 솔루션 등 많은 리소스를 필요로 한다.
함수 호출은 LLM이 자연어 프롬프트와 실제 코드 또는 API 사이의 다리 역할을 합니다. 모델은 텍스트를 생성하는 대신 미리 정의된 함수를 호출할 때를 결정하고, 함수 이름과 인수가 포함된 구조화된 JSON 호출을 생성한 후 응용 프로그램이 그 호출을 실행하고 반환할 때까지 기다립니다.
알리바바의 Qwen 팀이 Qwen 시리즈의 최신 대형 언어 모델인 Qwen3을 공개했다. 이 모델은 Dense 및 Mixture-of-Experts (MoE) 모델의 포괄적인 스위트를 제공하며, 세밀한 추론, 다국어 능력, 계산 효율성에 대한 다양한 도전 과제를 해결하고 있다.
Devin AI가 새로운 무료 도구 ‘DeepWiki’를 소개했습니다. 이 도구는 GitHub 저장소에 대한 구조화된 위키 스타일 문서를 자동으로 생성하며, 익숙하지 않은 코드베이스를 이해하는 과정을 단순화합니다. DeepWiki는 리포지토리 URL에서 직접 포괄적이고 대화식 개요를 제공하여 소프트웨어 개발에서 흔한 고통점을 해결합니다.
USC 연구진은 LoRA를 이용해 비용 효율적인 강화 학습을 위한 Tina를 소개했습니다. Tina는 강력한 다단계 추론을 달성함에 있어 중요한 역할을 합니다. 과학 연구와 전략 계획과 같은 복잡한 문제 해결 분야에서 이러한 추론이 중요합니다. 모델들이 단계별 추론 데모를 통해 학습하는 지도 미세조정(SFT)을 포함한 전통적인 추론 기술을 향상시키는 것이 주요 과제입니다.
LLM 기반의 다중 에이전트 시스템은 계획, 추론, 도구 사용, 기억 능력을 가지며 챗봇, 코드 생성, 수학, 로봇학 등 다양한 응용 프로그램의 기반을 형성한다. 그러나 수동으로 설계되어 고인적인 비용과 확장성 제약으로 인해 중요한 도전에 직면했다. 그래프 기반 방법은 워크플로 디자인을 자동화하기 위해 노력해왔다.
PraisonAI 에이전트가 데이터 분석을 완전 자율, AI 주도 파이프라인으로 발전시키는 방법을 보여주는 튜토리얼. 자연어 프롬프트 몇 개로 워크플로우의 각 단계를 조정하여 CSV 또는 Excel 파일을 로드하고 행 필터링, 트렌드 요약, 사용자 정의 필드별 그룹화, 피벗 테이블, 결과를 익스포트하는 방법을 학습할 수 있음.
지식 그래프 메모리 서버를 사용하여 Claude 데스크톱은 여러 채팅을 통해 사용자에 대한 정보를 기억하고 조직화할 수 있습니다. 이를 통해 Claude는 서로 다른 정보 간의 관계를 이해하고 개인화된 응답을 제공할 수 있습니다.
구글 클라우드가 세계 최고 기관들로부터 601가지 실제 세계 생성 AI 사용 사례 compendium을 공개했다. 지난해 구글 클라우드 넥스트 2024에서 공유한 101가지 사용 사례에서 6배로 확장된 이번 공개는 GenAI 기술이 폭발적인 속도로 발전하고 있음을 보여준다.
AgentA/B는 LLM 에이전트를 활용하여 실제 사용자 행동을 시뮬레이션하고 라이브 웹 플랫폼에서 전통적인 A/B 테스팅을 변형하는 확장 가능한 AI 시스템이다. 웹 인터페이스 설계 및 평가는 디지털 선도적인 세계에서 가장 중요한 작업 중 하나이며, 레이아웃, 요소 위치, 또는 탐색 논리의 변경은 사용자가 웹사이트와 상호 작용하는 방식에 영향을 줄 수 있다.
NVIDIA AI가 OpenMath-Nemotron-32B 및 14B-Kaggle을 발표했다. 이는 수학 추론을 위한 고급 AI 모델로, AIMO-2 대회에서 1위를 차지하고 새로운 기록을 세웠다.
로우보트는 다중 에이전트 시스템의 구축, 디버깅, 배포를 가속화하는 오픈 소스 IDE로, OpenAI Agents SDK를 기반으로 하며 MCP 서버와 연결되어 다중 에이전트 AI 워크플로를 구축할 수 있다.
긴 문맥을 다루는 데 LLM의 성능을 평가하는 것은 중요하며, 최근의 LLM인 Gemini-1.5, GPT-4, Claude-3.5, Qwen-2.5 등은 강력한 추론 능력을 유지하면서 문맥 길이의 한계를 늘렸다. 이러한 능력을 평가하기 위해 ∞Bench, LongBench, L-Eval과 같은 벤치마크가 개발되었다.
PydanticAI 라이브러리를 활용해 티켓 보조 프로그램을 만드는 튜토리얼. Pydantic v2 모델로 데이터 규칙 정의, SQLite 데이터베이스에 티켓 저장, Python의 uuid 모듈로 고유 식별자 생성. 티켓 생성 및 상태 확인을 위한 두 개의 에이전트 사용.