고해상도 이미지에 대한 AR 모델의 확장은 계산 비용이 급증하는 문제를 제기하고 있는데, Meta AI가 이미지 토큰을 줄이는 간단한 AI 접근 방법인 Token-Shuffle을 소개했다.
Skywork AI는 강점인 특화된 추론 능력을 강화하면서도 다양한 작업에 대한 일반화를 유지하는 것에 대한 도전에 집중하고 있습니다. 최근의 연구에서, 시각적 이해 작업에 대한 성능 저하와 시각적 환각 증세 증가로 인해 ‘느린 사고’ 모델이 제안되었습니다.
NVIDIA가 세밀한 이미지 및 비디오 캡션을 위한 다중 모달 LLM 모델인 ‘Describe Anything 3B’를 발표했다. 시각-언어 모델에서 이미지나 비디오의 특정 영역을 설명하는 것은 어려운 문제인데, 이 모델은 세부적이고 지역별 설명을 생성하는 데 탁월한 성과를 보여준다.
디커플드 디퓨전 트랜스포머는 이미지 생성 작업에서 우수한 성능을 보이며 기존 GAN 및 자기 회귀 아키텍처를 능가한다. 이미지에 점진적으로 노이즈를 추가하고 이 과정을 거꾸로 되돌리는 방식으로 작동하여 데이터 분포를 근사하는 모델을 구현한다.

Eagle 2.5는 GPT-4o와 같은 비디오 작업에서 8B 매개변수를 사용하여 일반적인 비전-언어 모델로 작동하며, 긴 문맥 다중모달 데이터를 효과적으로 처리하는 능력을 갖추고 있음.
비디오 생성은 시간에 걸쳐 움직임과 시각적 현실을 시뮬레이트하는 이미지 시퀀스를 만드는 컴퓨터 비전 및 머신 러닝 분야다. 스탠포드 대학 연구진은 FramePack라는 압축 기반 AI 프레임워크를 제안하여 장기 시퀀스 비디오 생성 시 발생하는 Drifting과 Forgetting 문제를 효율적인 컨텍스트 관리와 샘플링을 이용해 해결하는 방안을 제시했다.
Meta AI가 소개한 Perception Encoder는 이미지와 비디오에 걸쳐 다양한 시각 작업을 뛰어나게 처리하는 대규모 비전 인코더다. AI 시스템이 점점 다중 모달로 발전함에 따라 시각 지각 모델의 역할은 더 복잡해지고 있다. 기존의 비전 인코더는 물체와 장면을 인식하는 것뿐만 아니라 캡션, 질문 응답, 세부 인식, 문서 구문 분석, 이미지와 비디오 모두에 걸쳐 공간 추론을 지원해야 한다.
MLLM은 최근 세밀한 픽셀 수준 시각적 이해를 다루는 데 진전되어 정확한 영역 기반 편집 및 분할과 같은 작업에 확장되었습니다. 기존 방법들은 복잡한 아키텍처에 의존하는데, 이를 극복하기 위해 바이트댄스와 WHU의 연구자들이 픽셀-SAIL을 소개하며 7B MLLMs를 능가했습니다.