
Articul8가 일반적인 LLM을 능가하는 도메인 특화 모델로 기업용 생성적 AI를 재정의하고, Amazon SageMaker HyperPod가 이를 어떻게 가속화했는지 살펴봅니다. Articul8의 반도체 모델은 최고의 오픈 소스 모델 대비 2배 높은 정확도를 달성하며 배포 시간을 4배 단축했습니다.
Articul8가 일반적인 LLM을 능가하는 도메인 특화 모델로 기업용 생성적 AI를 재정의하고, Amazon SageMaker HyperPod가 이를 어떻게 가속화했는지 살펴봅니다. Articul8의 반도체 모델은 최고의 오픈 소스 모델 대비 2배 높은 정확도를 달성하며 배포 시간을 4배 단축했습니다.
이 블로그 포스트에서는 자연어 및 이미지 쿼리를 사용하여 시맨틱 비디오 검색을 위해 대형 비전 모델(LVMs)을 활용하는 방법을 소개합니다. 시간 프레임 부드럽게 하는 등의 사용 사례별 메소드를 소개하여 비디오 검색 성능을 향상시킵니다. 또한, Hugging Face Model Hub의 공개 LVMs를 활용하여 비디오, 이미지 및 텍스트 처리를 수행하기 위해 Amazon SageMaker AI에서 비동기 및 실시간 호스팅 옵션을 사용하여 이 접근 방식의 엔드 투 엔드 기능을 설명합니다. 마지막으로 Amazon OpenSearch Serverless를 사용하여 저지연 시맨틱 비디오 검색을 수행합니다.
Radial은 중소 및 대기업 브랜드에게 통합 결제, 사기 탐지 및 옴니채널 솔루션을 제공하는 최대 3PL 충족 공급 업체이다. 이 게시물에서는 Radial이 Amazon SageMaker를 사용하여 머신 러닝 워크플로우를 현대화함으로써 사기 탐지 머신 러닝 응용 프로그램의 비용과 성능을 최적화하는 방법을 소개한다.
본문에서는 AWS Graviton 인스턴스와 호환되도록 미리 구축된 컨테이너를 확장하여 SageMaker AI에 소형 언어 모델을 배포하는 방법을 소개합니다. 솔루션의 개요와 구현 단계에 대한 자세한 설명을 제공하며, GitHub 저장소에서 예제 노트북을 찾을 수 있습니다.
이 글에서는 Terraform을 사용하여 SageMaker 프로젝트의 사용자 정의 템플릿을 정의, 배포, 프로비저닝하는 방법을 소개합니다. 다른 IaC 도구에 의존하지 않고 Terraform Enterprise 인프라 내에서 엄격하게 SageMaker 프로젝트를 활성화할 수 있습니다.
ZURU가 AWS Generative AI Innovation Center와 AWS Professional Services와 협력하여 생성 모델 AI를 활용한 더 정확한 텍스트-바닥 도면 생성기를 구현했다. 이 글에서는 대형 언어 모델 (LLM)을 활용한 해결책이 선택된 이유와 모델 선택, 프롬프트 엔지니어링, 파인튜닝을 통해 결과를 개선하는 방법을 살펴본다.
Gemma 3 27B 모델이 Amazon Bedrock Marketplace와 SageMaker JumpStart를 통해 이용 가능하다. 어떻게 시작하고 강력한 지시 지향 기능을 활용하는지 안내.
Apoidea 그룹은 Amazon SageMaker HyperPod를 활용하여 대형 비전 언어 모델(LVLMs)을 사용하여 은행 및 금융 문서에서 테이블 구조 인식 성능을 더욱 향상시키는 방법을 탐구한다. Qwen2-VL-7B-Instruct 모델을 LLaMA-Factory를 사용하여 세밀하게 조정하는 방법을 소개한다.
Qualtrics가 Amazon SageMaker와 Amazon Bedrock을 활용해 구축한 AI 플랫폼인 소크라테스에 대해 소개합니다. Qualtrics는 이를 통해 고객 솔루션과 생성 모델 AI를 구현하고 있습니다.
DeepSeek-R1 671b 모델을 세밀하게 조정하기 위해 Amazon SageMaker HyperPod 레시피를 사용하는 방법을 소개합니다. SageMaker 훈련 작업과 SageMaker HyperPod를 사용하여 이러한 레시피를 단계별로 구현하는 방법을 보여줍니다.
AWS 서비스와 오픈 소스 도구를 통합하여 조직 내 강력한 레드 팀 매커니즘을 구축하는 방법에 대해 탐구합니다. 구체적으로 Data Reply의 레드 팀 솔루션을 소개하며 AI 안전 및 책임 있는 AI 실천을 강화하는 포괄적인 청사진을 논의합니다.
AWS LLM League의 게임화된 지원이 파트너들의 AI 개발 역량을 향상시키는 방법을 소개하며, 작은 언어 모델의 세밀한 조정이 특정 산업의 필요에 맞는 비용 효율적인 전문 솔루션을 제공하는 방법을 보여줍니다.
이 글에서는 Amazon SageMaker에서 오픈 소스 NER 및 LLM을 활용하여 AI 기반 문서 처리 플랫폼을 구축하는 방법에 대해 소개합니다.
Amazon SageMaker Large Model Inference (LMI) 컨테이너 v15가 출시되었습니다. vLLM 0.8.4를 기반으로 한 vLLM V1 엔진을 지원하여 성능 향상과 다중 모달리티 모델 호환성을 제공합니다. 이를 통해 대용량 언어 모델을 최고의 성능으로 확장 가능하게 배포하고 제공할 수 있습니다.
Salesforce의 AI 모델 서빙팀은 자연어 처리와 AI 능력을 기업 애플리케이션에 최적화하는 데 중점을 두고 있으며, Amazon SageMaker를 활용하여 모델 배포의 한계를 넓히고 있다.
이 포스트는 비용 효율적이고 고성능 추론을 위해 AWS Inferentia2 인스턴스에 Mixtral 8x7B 언어 모델을 배포하고 제공하는 방법을 보여줍니다. Hugging Face Optimum Neuron을 사용한 모델 컴파일 및 Text Generation Inference (TGI) Container를 통해 LLMs를 배포하고 제공하는 방법을 안내합니다.
Amazon Nova 모델의 소개는 AI 분야에서의 중요한 발전을 나타내며, 대형 언어 모델(LLM) 최적화에 새로운 기회를 제공한다. 본 포스트에서는 Amazon Nova 모델을 기준으로 모델 맞춤화와 RAG를 효과적으로 수행하는 방법을 보여준다. 최신 Amazon Nova 모델을 활용한 모델 맞춤화와 RAG 사이의 포괄적인 비교 연구를 실시하고 이러한 소중한 통찰을 공유한다.