2025년 6월 14일 토요일
오늘의 신문
2025년 6월 14일 토요일 오늘의 신문
AI 기반 개발에서 코딩 에이전트는 필수적인 협업자로 자리 잡았다. 이러한 독립적 또는 준자율적 도구는 코드를 작성, 테스트, 리팩토링하여 개발 주기를 현격히 가속화한다. 그러나 하나의 코드베이스에서 작업하는 에이전트 수가 증가함에 따라 의존성 충돌, 에이전트 간의 상태 누출, 각 에이전트의 작업 추적의 어려움도 커진다.
2025년 6월 12일 오전 3시 18분
본 튜토리얼에서는 Riza의 안전한 Python 실행을 기반으로 강력한 다기능 AI 에이전트를 Google Colab에서 구축하는 방법을 안내합니다. Riza 자격 증명을 구성하여 검사 가능한 코드 실행을 가능하게하고, LangChain 에이전트에 Riza의 ExecPython 도구를 통합합니다.
2025년 6월 11일 오후 4시 48분
AI-주도 개발이 소프트웨어 제작을 재정의함에 따라, "vibe 코딩"이 개발자가 원하는 대로 말하면 에이전트가 구축하는 패러다임 전환적 방법으로 등장했다. Andrej Karpathy가 만든 용어는 코드 중심적 워크플로우에서 자연어 기반 소프트웨어 프로토타이핑으로의 전환을 반영한다. 신뢰할만한 vibe 코딩 도구 목록을 소개한다.
2025년 6월 10일 오전 4시 31분
Gemini 에이전트 네트워크 프로토콜을 소개하는 튜토리얼. Google의 Gemini 모델을 활용하여 AI 에이전트 간의 지능적인 협업을 가능하게 하는 프레임워크로, 분석가, 연구원, 합성기 및 검증자 역할을 가진 에이전트들 사이의 동적 통신을 용이하게 함.
2025년 6월 8일 오후 4시 31분
대화형 AI 연구 보조기의 필요성, 최신 대형 언어 모델의 한계와 동적 AI 에이전트 스택 소개
2025년 6월 8일 오후 3시 56분
모델 컨텍스트 프로토콜(MCP)은 2024년 11월에 Anthropic에 의해 소개되었으며, AI 모델이 JSON-RPC 2.0 기반의 프로토콜을 통해 외부 도구와 상호 작용할 수 있도록 하는 표준화된 안전한 인터페이스를 제공한다. Claude, Gemini, OpenAI에서 이미 MCP를 지원하고 있으며, 빠르게 채택되고 있다.
2025년 6월 8일 오전 4시 09분
Mistral 에이전트에서 함수 호출을 활성화하는 방법을 살펴보는 튜토리얼. 함수의 입력 매개변수를 명확한 스키마로 정의하여 사용자 정의 도구를 에이전트에서 호출 가능하게 만들어 강력하고 동적인 상호작용을 가능하게 함. AviationStack API를 사용하여 실시간 항공편 상태를 검색.
2025년 6월 8일 오전 3시 13분
본 튜토리얼에서는 SerpAPI의 Google 검색 기능과 Google Gemini-1.5-Flash 모델의 기능을 결합하여 Google Colab 노트북 내에서 고급 연구 및 분석 워크플로우를 생성하는 방법을 보여줍니다. AdvancedSerpAPI Python 클래스를 정의함으로써 사용자는 일반 웹 결과, 뉴스 기사, 이미지 등을 다루는 향상된 검색 방법에 액세스할 수 있습니다.
2025년 6월 6일 오후 5시 17분
이 튜토리얼에서는 LangGraph와 Gemini 1.5 Flash를 사용하여 다단계 지능형 쿼리 처리 에이전트를 구축하는 방법을 보여줍니다. 각 노드는 라우팅, 분석, 연구, 응답 생성 및 유효성 검사로 구성된 목적 노드 시리즈를 통해 들어오는 쿼리를 처리합니다.
2025년 6월 5일 오후 5시 04분
파리 기반의 H 회사가 Agentic AI를 현실로 구현하기 위해 3가지 주요 단계를 발표했다. Runner H 공개 베타 버전과 함께 Holo-1과 Tester H도 공개되었다.
2025년 6월 5일 오전 1시 44분
이 튜토리얼에서는 Tavily와 구글 Gemini AI를 활용한 고급 대화형 웹 인텔리전스 에이전트를 소개한다. 웹 페이지에서 구조화된 콘텐츠를 추출하고 AI 기반 분석을 수행하여 통찰력 있는 결과를 제공하는 스마트 에이전트를 구성하고 사용하는 방법을 배운다.
2025년 6월 4일 오전 2시 03분
이 튜토리얼에서는 Python을 사용하여 에이전트 통신 프로토콜 (ACP)을 구현하고, 구글의 Gemini API를 활용하여 유연하고 ACP 호환성있는 메시징 시스템을 구축합니다. google-generativeai 라이브러리의 설치 및 구성부터 시작하여, 핵심 추상화, 메시지 유형, 수행, ACPMessage 데이터 클래스 등을 소개하며 에이전트 간 통신을 표준화합니다.
2025년 5월 31일 오전 3시 08분
스탠포드 대학 연구진이 Biomni를 소개했다. 이는 생명과학 분야에서 다양한 작업과 데이터 유형에 걸쳐 자동화를 위한 AI 에이전트로, 질병 메커니즘 발견, 신약 타깃 식별, 효과적인 치료법 개발을 통해 인간 건강을 발전시키는 빠르게 발전하는 분야에 활용된다.
2025년 5월 30일 오후 2시 21분
DeepSeek가 R1 추론 모델의 업데이트 버전인 DeepSeek-R1-0528을 출시했다. 이번 업데이트로 모델은 수학, 프로그래밍, 일반 논리 추론 분야에서 능력을 향상시켰으며, 주요 모델인 OpenAI의 o3 및 Google의 Gemini 2.5 Pro과의 경쟁력을 갖추게 되었다.
2025년 5월 29일 오후 10시 38분
Mistral은 AI 에이전트 개발을 용이하게 하는 Agents API를 소개했다. Python 코드 실행, 이미지 생성, RAG 수행 등 다양한 작업을 수행할 수 있는 AI 에이전트를 개발하기 위한 프레임워크로, 대형 언어 모델이 여러 도구와 데이터 원본과 상호 작용할 수 있는 환경을 제공한다.
2025년 5월 27일 오후 4시 57분
본 튜토리얼에서는 Google의 Gemini 모델 위에 구축된 Agent2Agent 협업 프레임워크를 구현한다. 데이터 과학자, 제품 전략가, 위험 분석가 및 창의적 혁신가까지 다양한 AI 페르소나를 만드는 과정을 안내하며, 이들 에이전트들이 구조화된 메시지를 교환하여 복잡한 실제 문제에 대처하는 방법을 보여준다.
2025년 5월 27일 오후 4시 34분

최신뉴스 전체보기

Dagger를 사용하여 컨테이너를 이용해 병렬로 여러 AI 코딩 에이전트 실행하기

AI 기반 개발에서 코딩 에이전트는 필수적인 협업자로 자리 잡았다. 이러한 독립적 또는 준자율적 도구는 코드를 작성, 테스트, 리팩토링하여 개발 주기를 현격히 가속화한다. 그러나 하나의 코드베이스에서 작업하는 에이전트 수가 증가함에 따라 의존성 충돌, 에이전트 간의 상태 누출, 각 에이전트의 작업 추적의 어려움도 커진다.

2025년 6월 12일 오전 3시 18분
Riza와 Gemini를 활용하여 안전한 Python 실행으로 다기능 AI 에이전트 개발하기

본 튜토리얼에서는 Riza의 안전한 Python 실행을 기반으로 강력한 다기능 AI 에이전트를 Google Colab에서 구축하는 방법을 안내합니다. Riza 자격 증명을 구성하여 검사 가능한 코드 실행을 가능하게하고, LangChain 에이전트에 Riza의 ExecPython 도구를 통합합니다.

2025년 6월 11일 오후 4시 48분
2025년 AI 주도 소프트웨어 개발을 변화시키는 최고의 15가지 Vibe 코딩 도구

AI-주도 개발이 소프트웨어 제작을 재정의함에 따라, “vibe 코딩”이 개발자가 원하는 대로 말하면 에이전트가 구축하는 패러다임 전환적 방법으로 등장했다. Andrej Karpathy가 만든 용어는 코드 중심적 워크플로우에서 자연어 기반 소프트웨어 프로토타이핑으로의 전환을 반영한다. 신뢰할만한 vibe 코딩 도구 목록을 소개한다.

2025년 6월 10일 오전 4시 31분
연구, 분석 및 검증 작업을 위해 Gemini를 활용한 비동기 AI 에이전트 네트워크 구축 방법

Gemini 에이전트 네트워크 프로토콜을 소개하는 튜토리얼. Google의 Gemini 모델을 활용하여 AI 에이전트 간의 지능적인 협업을 가능하게 하는 프레임워크로, 분석가, 연구원, 합성기 및 검증자 역할을 가진 에이전트들 사이의 동적 통신을 용이하게 함.

2025년 6월 8일 오후 4시 31분
구글, Gemini 2.5와 LangGraph를 활용한 오픈소스 풀 스택 AI 에이전트 스택 소개

대화형 AI 연구 보조기의 필요성, 최신 대형 언어 모델의 한계와 동적 AI 에이전트 스택 소개

2025년 6월 8일 오후 3시 56분
50+ 모델 컨텍스트 프로토콜 (MCP) 서버 탐색 가치

모델 컨텍스트 프로토콜(MCP)은 2024년 11월에 Anthropic에 의해 소개되었으며, AI 모델이 JSON-RPC 2.0 기반의 프로토콜을 통해 외부 도구와 상호 작용할 수 있도록 하는 표준화된 안전한 인터페이스를 제공한다. Claude, Gemini, OpenAI에서 이미 MCP를 지원하고 있으며, 빠르게 채택되고 있다.

2025년 6월 8일 오전 4시 09분
Mistral 에이전트에서 표준 JSON 스키마 형식을 사용하여 함수 호출 활성화하는 방법

Mistral 에이전트에서 함수 호출을 활성화하는 방법을 살펴보는 튜토리얼. 함수의 입력 매개변수를 명확한 스키마로 정의하여 사용자 정의 도구를 에이전트에서 호출 가능하게 만들어 강력하고 동적인 상호작용을 가능하게 함. AviationStack API를 사용하여 실시간 항공편 상태를 검색.

2025년 6월 8일 오전 3시 13분
고급 분석을 위한 Google Gemini-1.5-Flash와의 고급 SerpAPI 통합에 대한 포괄적인 코딩 튜토리얼

본 튜토리얼에서는 SerpAPI의 Google 검색 기능과 Google Gemini-1.5-Flash 모델의 기능을 결합하여 Google Colab 노트북 내에서 고급 연구 및 분석 워크플로우를 생성하는 방법을 보여줍니다. AdvancedSerpAPI Python 클래스를 정의함으로써 사용자는 일반 웹 결과, 뉴스 기사, 이미지 등을 다루는 향상된 검색 방법에 액세스할 수 있습니다.

2025년 6월 6일 오후 5시 17분
LangGraph와 Gemini를 활용한 반복적 AI 워크플로우 에이전트 구축 단계별 코딩 가이드

이 튜토리얼에서는 LangGraph와 Gemini 1.5 Flash를 사용하여 다단계 지능형 쿼리 처리 에이전트를 구축하는 방법을 보여줍니다. 각 노드는 라우팅, 분석, 연구, 응답 생성 및 유효성 검사로 구성된 목적 노드 시리즈를 통해 들어오는 쿼리를 처리합니다.

2025년 6월 5일 오후 5시 04분
H 회사, 개발자를 위한 Runner H 공개 베타 버전과 Holo-1 및 Tester H 발표

파리 기반의 H 회사가 Agentic AI를 현실로 구현하기 위해 3가지 주요 단계를 발표했다. Runner H 공개 베타 버전과 함께 Holo-1과 Tester H도 공개되었다.

2025년 6월 5일 오전 1시 44분
Tavily와 Gemini AI로 고급 웹 인텔리전스 에이전트 구축하는 코딩 구현

이 튜토리얼에서는 Tavily와 구글 Gemini AI를 활용한 고급 대화형 웹 인텔리전스 에이전트를 소개한다. 웹 페이지에서 구조화된 콘텐츠를 추출하고 AI 기반 분석을 수행하여 통찰력 있는 결과를 제공하는 스마트 에이전트를 구성하고 사용하는 방법을 배운다.

2025년 6월 4일 오전 2시 03분
Agent Communication Protocol (ACP)를 활용한 확장 가능한 다중 에이전트 통신 시스템 구축을 위한 코딩 가이드

이 튜토리얼에서는 Python을 사용하여 에이전트 통신 프로토콜 (ACP)을 구현하고, 구글의 Gemini API를 활용하여 유연하고 ACP 호환성있는 메시징 시스템을 구축합니다. google-generativeai 라이브러리의 설치 및 구성부터 시작하여, 핵심 추상화, 메시지 유형, 수행, ACPMessage 데이터 클래스 등을 소개하며 에이전트 간 통신을 표준화합니다.

2025년 5월 31일 오전 3시 08분
Stanford 연구진이 소개한 Biomni: 다양한 작업과 데이터 유형에 대한 생명과학 AI 에이전트

스탠포드 대학 연구진이 Biomni를 소개했다. 이는 생명과학 분야에서 다양한 작업과 데이터 유형에 걸쳐 자동화를 위한 AI 에이전트로, 질병 메커니즘 발견, 신약 타깃 식별, 효과적인 치료법 개발을 통해 인간 건강을 발전시키는 빠르게 발전하는 분야에 활용된다.

2025년 5월 30일 오후 2시 21분
DeepSeek, 오픈 소스 추론 AI 모델 R1-0528 출시: 단일 GPU 효율성으로 향상된 수학 및 코드 성능 제공

DeepSeek가 R1 추론 모델의 업데이트 버전인 DeepSeek-R1-0528을 출시했다. 이번 업데이트로 모델은 수학, 프로그래밍, 일반 논리 추론 분야에서 능력을 향상시켰으며, 주요 모델인 OpenAI의 o3 및 Google의 Gemini 2.5 Pro과의 경쟁력을 갖추게 되었다.

2025년 5월 29일 오후 10시 38분
Mistral, 개발자 친화적인 AI 에이전트 생성을 위한 새 플랫폼인 에이전트 API 출시

Mistral은 AI 에이전트 개발을 용이하게 하는 Agents API를 소개했다. Python 코드 실행, 이미지 생성, RAG 수행 등 다양한 작업을 수행할 수 있는 AI 에이전트를 개발하기 위한 프레임워크로, 대형 언어 모델이 여러 도구와 데이터 원본과 상호 작용할 수 있는 환경을 제공한다.

2025년 5월 27일 오후 4시 57분
협업 및 비평 주도 AI 문제 해결을 위한 Agent2Agent 프레임워크의 단계별 코딩 구현

본 튜토리얼에서는 Google의 Gemini 모델 위에 구축된 Agent2Agent 협업 프레임워크를 구현한다. 데이터 과학자, 제품 전략가, 위험 분석가 및 창의적 혁신가까지 다양한 AI 페르소나를 만드는 과정을 안내하며, 이들 에이전트들이 구조화된 메시지를 교환하여 복잡한 실제 문제에 대처하는 방법을 보여준다.

2025년 5월 27일 오후 4시 34분
NVIDIA, 효율적인 엣지 AI 및 과학 작업에 최적화된 Llama Nemotron Nano 4B 발표

NVIDIA가 Llama Nemotron Nano 4B를 공개했는데, 이는 과학 작업, 프로그래밍, 심볼릭 수학, 함수 호출 및 명령어 따르기에 강력한 성능과 효율성을 제공하면서 엣지 배포에 적합한 오픈 소스 추론 모델이다. 40억 개의 파라미터로 높은 정확도를 달성하며, 비교 모델 대비 최대 50% 높은 처리량을 달성했다.

2025년 5월 25일 오후 5시 06분
AI 에이전트를 구축하기 위한 코딩 구현: 라이브 Python 실행 및 자동 검증

LangChain의 ReAct 에이전트 프레임워크와 Anthropic의 Claude API를 통합하여 Python 코드를 생성하고 라이브로 실행하여 결과를 캡처하는 종단간 솔루션 구축 방법에 대한 튜토리얼.

2025년 5월 25일 오후 2시 23분
LangGraph와 Claude를 사용하여 동적 에이전트 생성을 위한 커스터마이즈 가능한 멀티툴 AI 에이전트 구축 단계별 가이드

LangGraph와 Claude를 사용하여 다양한 작업에 최적화된 강력한 멀티툴 AI 에이전트를 만드는 포괄적인 튜토리얼. 수학 계산, 웹 검색, 날씨 조회, 텍스트 분석, 실시간 정보 검색 등을 포함한 다양한 작업에 최적화된 AI 에이전트를 만드는 과정을 소개하며, 설치를 간편화하여 초보자도 쉽게 설정할 수 있도록 함.

2025년 5월 24일 오후 6시 08분
Marktechpost, 2025년 Agentic AI 및 AI 에이전트 보고서 발표: AI 에이전트와 에이전틱 AI의 기술적 지형

Marktechpost AI 미디어가 2025년 Agentic AI 및 AI 에이전트 보고서를 발표했습니다. 이 보고서는 AI 에이전트의 아키텍처, 프레임워크 및 배포 전략을 탐구하며, 미래를 형성하는 기술적으로 엄밀한 내용을 제공합니다. 보고서는 추론이 가능한 모델, 메모리 프레임워크 및 조정을 기반으로 한 증가하는 생태계를 탐색합니다.

2025년 5월 21일 오후 7시 53분
코딩 에이전트 75% 급증: SimilarWeb의 AI 사용 보고서, 2025년 생성 AI 붐에서 이기고 지는 섹터 강조

SimilarWeb의 ‘AI 글로벌 보고서: 생성 AI에서의 글로벌 섹터 트렌드’는 디지털 업무 방식을 재정의하는 생성 AI로 인해 사용자 참여 패턴이 변화하는 것을 종합적으로 보여줍니다. 코딩 에이전트의 현저한 성장, EdTech의 혁신적 영향, 그리고 법률 AI 플랫폼의 예상치 못한 하락을 강조합니다.

2025년 5월 14일 오후 7시 41분
PwC, 자율적 다중 에이전트 시스템을 기업에 배치하기 위한 전략 청사진에 대한 Agentic AI에 대한 집행부 안내서 발표

PwC는 “Agentic AI – GenAI의 새로운 지평”라는 최신 집행부 안내서에서, 자율적인 의사 결정과 문맥 인식 상호작용이 가능한 Agentic 인공지능에 대한 전략적 접근 방식을 제시한다. 이러한 시스템은 기관의 운영 방식을 재구성할 것으로 예상되며, 전통적인 소프트웨어 모델에서 조정된 모델로 전환될 것이다.

2025년 5월 13일 오후 8시 47분
LLM 에이전트 구현하기: MCP-Use를 활용한 도구 접근

MCP-Use는 모든 LLM을 어떤 MCP 서버에 연결하여 웹 브라우징, 파일 작업 등의 도구 접근을 제공하는 오픈 소스 라이브러리다. 이 튜토리얼에서는 langchain-groq와 MCP-Use의 내장 대화 기억을 사용하여 도구와 상호 작용할 수 있는 간단한 챗봇을 구축한다.

2025년 5월 13일 오후 1시 34분
다음 세대 상호 운용성 프로토콜에 대한 심층 기술적 탐구: 모델 컨텍스트 프로토콜 (MCP), 에이전트 통신 프로토콜 (ACP), 에이전트 간 프로토콜 (A2A) 및 에이전트 네트워크 프로토콜 (ANP)

자율 시스템이 점점 더 큰 언어 모델 (LLM)을 추론, 계획 및 실행에 활용함에 따라, 능력의 병목 현상이 아닌 의사 소통에서 병목 현상이 발생했습니다. LLM 에이전트는 지침을 구문 분석하고 도구를 호출할 수 있지만, 서로 확장 가능하고 안전하며 모듈식으로 상호 운용하는 능력은 심각하게 제한됩니다.

2025년 5월 10일 오전 12시 13분
OpenAI, o4-mini에 Reinforcement Fine-Tuning (RFT) 출시: 맞춤형 모델 최적화의 한 단계

OpenAI가 o4-mini 추론 모델에 Reinforcement Fine-Tuning (RFT)을 출시했는데, 이는 전문화된 작업에 맞게 기초 모델을 맞춤화하는 강력한 새로운 기술을 소개했다. RFT는 강화 학습의 원칙에 기반을 두고 있으며, 조직이 사용자 정의 목표와 보상 함수를 정의할 수 있어 모델이 향상되는 방식에 대해 상세한 제어를 제공한다.

2025년 5월 8일 오후 11시 58분
메타 AI, 안전한 AI 에이전트 구축을 돕는 보안 가드레일 도구 ‘LlamaFirewall’ 오픈 소스로 공개

Meta AI가 출시한 LlamaFirewall은 AI 에이전트의 보안 위험에 대응하기 위해 시스템 수준의 보안 계층을 제공하는 오픈 소스 가드레일 시스템이다.

2025년 5월 8일 오후 11시 30분
AgentQL 모델 컨텍스트 프로토콜(MCP) 서버 구현하기

AgentQL은 정확한 정보 형태를 정의함으로써 구조화되지 않은 데이터를 스크래핑할 수 있게 해줍니다. 이 튜토리얼에서는 Claude Desktop 내에 AgentQL MCP 서버를 구현하고, Claude의 내장 시각화 기능을 사용하여 탐색합니다.

2025년 5월 6일 오후 1시 45분
8개의 포괄적인 오픈 소스 및 호스팅 솔루션으로 어떤 API든 AI-ready MCP 서버로 원활하게 변환하기

MCP는 AI 에이전트가 일관된 인터페이스를 통해 외부 서비스와 상호 작용할 수 있는 신흥 오픈 표준이다. API마다 사용자 정의 통합을 작성하는 대신, MCP 서버는 클라이언트 AI가 동적으로 발견하고 호출할 수 있는 일련의 도구를 노출한다. 이러한 분리는 API 제공업체가 진화할 수 있음을 의미한다.

2025년 5월 5일 오후 4시 11분
Zapier AI-Powered Cursor Agent를 구축하여 Model Context Protocol (MCP) Server를 사용하여 Gmail 메시지 읽기, 검색 및 전송하기

MCP와 Zapier AI의 파워를 이용하여 복잡한 코딩 없이 Cursor에서 반응형 이메일 에이전트를 구축하는 방법을 배웁니다. MCP 커넥터를 구성하여 Cursor와 Zapier AI를 연결하고 Gmail 계정을 연결하며, 읽기, 검색, 전송을 위한 의도를 정의합니다.

2025년 5월 2일 오후 5시 13분
ELIZA에서 대화 모델링으로: 대화형 AI 시스템과 패러다임의 진화

ELIZA의 간단한 규칙 기반 시스템에서 현재의 정교한 플랫폼으로 대화형 AI가 발전해왔다. 이 과정은 80년대부터 90년대의 스크립트 봇, 2010년대의 Rasa와 같은 ML-규칙 하이브리드 프레임워크를 거쳐 2020년대의 혁명적인 대형 언어 모델로 이어져 자연스러운 대화를 가능케 했다. 현재는 Parlant와 같은 최첨단 대화 모델링 플랫폼이 주류다.

2025년 5월 2일 오후 2시 08분
Fireworks AI와 LangChain을 사용하여 데이터를 가져오고 BigQuery SQL을 생성하며 대화 기억을 유지하는 REACT-스타일 에이전트 구축

이 튜토리얼에서는 Fireworks AI의 기능을 활용하여 LangChain과 함께 지능적인 도구 기능을 갖춘 에이전트를 구축하는 방법을 살펴볼 것이다. langchain-fireworks 패키지 설치부터 Fireworks API 키 구성, 높은 성능의 llama-v3-70b-instruct 모델을 사용한 ChatFireworks LLM 인스턴스 설정, LangChain의 에이전트 프레임워크와 통합까지 진행할 것이다.

2025년 5월 1일 오후 11시 19분
AI 에이전트 프로토콜에 대한 기술적 탐구: 확장 가능한 인공지능 시스템에서의 역할

대형 언어 모델 에이전트가 기업 및 연구 생태계 전반에 걸쳐 주목을 받는 가운데, 에이전트들의 통신 역량을 제한하는 표준화된 프로토콜의 부재로 인해 커뮤니케이션 병목 현상이 발생했다. 이로 인해 에이전트들의 상호 조정 능력 및 외부 도구와의 인터페이스가 제약을 받고 있다.

2025년 5월 1일 오후 10시 53분
Salesforce AI 연구, 신뢰할 수 있고 능력 있는 AI 에이전트를 발전시키기 위한 새로운 벤치마크, 가드레일 및 모델 아키텍처 소개

Salesforce AI 연구가 더 지능적이고 신뢰할 수 있으며 다재다능한 AI 에이전트를 구축하기 위한 포괄적인 로드맵을 제시했습니다. 이 최근 이니셔티브는 현재 AI 시스템의 기초적인 한계를 해결하기 위해 초점을 맞추고 있으며, 특히 불일치한 작업 성능, 강건성의 부족, 그리고 복잡한 기업 워크플로에 적응하는 데 어려움이 있는 부분에 초점을 맞추고 있습니다.

2025년 5월 1일 오후 1시 51분
Meta AI, Llama 4-Powered AI 앱 첫 버전 공개: ChatGPT와 경쟁할 독립형 AI 어시스턴트

Meta가 Llama 4로 구동되는 새 AI 앱을 출시했다. 이 앱은 ChatGPT와 경쟁하기 위해 더 개인화된 AI 경험을 제공하며, 소셜적으로 통합된 기능을 갖추고 있다.

2025년 5월 1일 오후 1시 32분
Dappier AI의 실시간 검색 및 추천 도구를 OpenAI의 챗 API와 통합하는 단계별 코딩 가이드

Dappier AI의 실시간 검색 및 추천 도구를 활용하여 대화형 애플리케이션을 향상시키는 방법을 배우는 튜토리얼. RealTimeSearchTool과 AIRecommendationTool을 결합하여 웹에서 최신 정보를 조회하고 사용자 정의 데이터 모델에서 개인화된 기사 제안을 제공할 수 있음.

2025년 4월 30일 오후 10시 14분
Mem0: 장기 AI 대화를 위한 지속적이고 구조화된 기억을 가능하게 하는 확장 가능한 메모리 아키텍처

대형 언어 모델은 정보를 유지하는 데 어려움을 겪지만, Mem0는 장기적인 참여가 필요한 응용 프로그램에 통합될 때 더욱 중요해집니다. Mem0는 구조적인 기억을 유지하며 여러 세션에 걸쳐 정보를 지속적으로 보관하는 확장 가능한 메모리 아키텍처입니다.

2025년 4월 30일 오후 3시 51분
exa-mcp-server 및 Claude Desktop를 사용하여 Model Context Protocol MCP를 활용하여 어떤 LinkedIn 프로필이든 원활하게 액세스하는 방법에 대한 자습서

exa-mcp-server와 Claude Desktop의 파워를 활용하여 LinkedIn 페이지에 프로그래밍적으로 액세스하는 방법을 배웁니다. Model Context Protocol의 가벼운, 고성능 구현을 제공하는 exa-mcp-server는 Claude Desktop이 HTTP 요청을 발행하고 필요에 따라 원시 HTML 또는 구조화된 데이터를 반환할 수 있게 합니다.

2025년 4월 30일 오전 3시 04분
코딩 에이전트가 자체적으로 개선될 수 있을까? 브리스톨 대학과 iGent AI 연구진, SICA (Self-Improving Coding Agent) 제안

브리스톨 대학과 iGent AI 연구진이 자체 코드와 성능을 반복적으로 향상시키는 SICA(자체 개선 코딩 에이전트)를 제안했다. 현재 대부분의 에이전트 시스템은 고정된 수동 조작 전략에 의존하고 있어 새로운 작업과 환경에 적응하는 능력이 제한되는데, SICA는 이러한 제한을 극복하고 있다.

2025년 4월 30일 오전 2시 31분
Gemini를 사용하여 사용자 정의 모델 컨텍스트 프로토콜 (MCP) 클라이언트 만드는 방법

본 튜토리얼에서는 Gemini를 사용하여 사용자 정의 MCP 클라이언트를 구현하는 방법을 안내합니다. 이를 통해 AI 애플리케이션을 MCP 서버에 연결하여 프로젝트를 강화하는 강력한 능력을 얻을 수 있습니다.

2025년 4월 29일 오후 5시 20분
실시간 대화형 AI 에이전트를 만들기 위한 다양한 함수 호출 방법 코딩 가이드

함수 호출은 LLM이 자연어 프롬프트와 실제 코드 또는 API 사이의 다리 역할을 합니다. 모델은 텍스트를 생성하는 대신 미리 정의된 함수를 호출할 때를 결정하고, 함수 이름과 인수가 포함된 구조화된 JSON 호출을 생성한 후 응용 프로그램이 그 호출을 실행하고 반환할 때까지 기다립니다.

2025년 4월 29일 오전 3시 03분
PraisonAI Agent 프레임워크를 활용한 완전 자율 데이터 분석 파이프라인 구축: 코딩 구현

PraisonAI 에이전트가 데이터 분석을 완전 자율, AI 주도 파이프라인으로 발전시키는 방법을 보여주는 튜토리얼. 자연어 프롬프트 몇 개로 워크플로우의 각 단계를 조정하여 CSV 또는 Excel 파일을 로드하고 행 필터링, 트렌드 요약, 사용자 정의 필드별 그룹화, 피벗 테이블, 결과를 익스포트하는 방법을 학습할 수 있음.

2025년 4월 27일 오후 3시 38분
Claude 데스크톱에서 로컬 지식 그래프를 활용한 영속 메모리 구현

지식 그래프 메모리 서버를 사용하여 Claude 데스크톱은 여러 채팅을 통해 사용자에 대한 정보를 기억하고 조직화할 수 있습니다. 이를 통해 Claude는 서로 다른 정보 간의 관계를 이해하고 개인화된 응답을 제공할 수 있습니다.

2025년 4월 26일 오후 10시 59분
구글 AI, 산업 전반에 걸친 601가지 실제 세계 생성 AI 사용 사례 공개

구글 클라우드가 세계 최고 기관들로부터 601가지 실제 세계 생성 AI 사용 사례 compendium을 공개했다. 지난해 구글 클라우드 넥스트 2024에서 공유한 101가지 사용 사례에서 6배로 확장된 이번 공개는 GenAI 기술이 폭발적인 속도로 발전하고 있음을 보여준다.

2025년 4월 26일 오후 6시 29분
복잡한 다중 에이전트 시스템을 구축하기 위한 오픈 소스 IDE인 로우보트 만나보기

로우보트는 다중 에이전트 시스템의 구축, 디버깅, 배포를 가속화하는 오픈 소스 IDE로, OpenAI Agents SDK를 기반으로 하며 MCP 서버와 연결되어 다중 에이전트 AI 워크플로를 구축할 수 있다.

2025년 4월 24일 오후 1시 21분
PydanticAI 에이전트, Pydantic v2 및 SQLite 데이터베이스를 사용하여 에이전틱 AI‑기반 비동기 티켓 보조 프로그램 구축하는 코딩 가이드

PydanticAI 라이브러리를 활용해 티켓 보조 프로그램을 만드는 튜토리얼. Pydantic v2 모델로 데이터 규칙 정의, SQLite 데이터베이스에 티켓 저장, Python의 uuid 모듈로 고유 식별자 생성. 티켓 생성 및 상태 확인을 위한 두 개의 에이전트 사용.

2025년 4월 22일 오후 3시 32분
Atla AI, 목적에 맞게 구축된 LLM 판사의 로컬 인터페이스인 Atla MCP 서버 소개

Atla의 강력한 LLM 판사 모델을 Model Context Protocol (MCP)을 통해 노출시키는 Atla MCP 서버가 AI 시스템 개발의 중요한 측면인 LLM 출력의 신뢰성 있는 평가를 지원한다.

2025년 4월 22일 오전 11시 17분
LLMs는 여전히 의학 자료를 신뢰할 수 없을 정도로 언급하는 데 어려움을 겪고 있음: 스탠포드 연구진이 AI 생성 응답에서 사실적인 지원을 감사하기 위한 SourceCheckup을 소개

LLMs가 의료 분야에서 중요해지면서 신뢰할 수 있는 소스가 그들의 결과물을 뒷받침하는 것이 점점 중요해지고 있다. 아직 FDA가 임상 의사 결정에 승인한 LLM은 없지만, GPT-4o, Claude, MedPaLM과 같은 최고 모델은 USMLE과 같은 표준 시험에서 의사를 능가했다. 이러한 모델들은 이미 정신 건강과 같은 현실적 상황에서 활용되고 있다.

2025년 4월 21일 오후 4시 51분
바이트댄스, 강력한 비전-언어 모델을 기반으로 한 오픈소스 다중모달 AI 에이전트 UI-TARS-1.5 공개

바이트댄스가 GUI 상호작용 및 게임 환경에 초점을 맞춘 최신 다중모달 에이전트 프레임워크인 UI-TARS-1.5를 공개했다. 화면 콘텐츠를 인식하고 대화형 작업을 수행할 수 있는 비전-언어 모델로 설계된 UI-TARS-1.5는 GUI 자동화 및 게임 추론 벤치마크 영역에서 지속적인 개선을 선보이며 선도적인 모델들을 능가하고 있다.

2025년 4월 21일 오전 3시 09분
Google Colab에서 Playwright를 활용한 브라우저 주도 AI 마스터하기

이 튜토리얼에서는 Google Colab 내에서 브라우저 주도 AI 에이전트의 기능을 활용하는 방법을 배우게 됩니다. Playwright의 headless Chromium 엔진과 browser_use 라이브러리의 높은 수준의 Agent 및 BrowserContext 추상화를 활용하여 웹사이트를 자동으로 탐색하고 데이터를 추출하며 복잡한 작업을 자동화할 것입니다.

2025년 4월 20일 오후 4시 31분
Meta AI, 협업 추론자 (코랄)를 소개합니다: LLM에서 협업 추론 기술을 평가하고 향상시키기 위해 특별히 설계된 AI 프레임워크

대형 언어 모델(Large language models, LLMs)은 질문 응답 및 구조적 추론과 같은 단일 에이전트 작업에서 놀라운 능력을 보여주었지만, 협업적으로 추론하는 능력은 여전히 미발달 상태입니다. Meta AI는 협업 추론자인 Coral을 소개하여 다수의 에이전트가 상호 작용하고 의견 충돌을 해결하며 해결책을 도출하는 능력을 향상시키는 AI 프레임워크를 특별히 설계했습니다.

2025년 4월 20일 오전 2시 15분
Model Context Protocol (MCP) 대 Function Calling: AI 통합 아키텍처 심층 탐구

대규모 언어 모델(Large Language Models, LLMs)과 외부 도구, 응용프로그램, 데이터 원본의 통합은 점점 더 중요해지고 있다. Model Context Protocol (MCP)와 Function Calling은 모델과 외부 시스템 간의 원활한 상호작용을 달성하기 위한 두 가지 중요한 방법이다. 두 접근 방식은 AI 모델의 실용적 능력을 확장하기 위해 목표를 두지만, 아키텍처 측면에서 근본적으로 다르다.

2025년 4월 18일 오후 5시 52분
OpenAI, 실제 응용을 위한 LLM 에이전트 구축 실무 안내서 발표

OpenAI가 엔지니어링 및 제품 팀을 위해 자율 AI 시스템 구현을 탐색하는 실무 안내서를 게시했다. 실제 배치 사례를 바탕으로 한 이 가이드는 적합한 사용 사례 식별, 에이전트 아키텍처 구성, 안전성과 신뢰성을 보장하기 위한 견고한 보호장치 내장에 대한 체계적 접근 방식을 제공한다.

2025년 4월 18일 오전 2시 46분