
이 튜토리얼에서는 구글의 첨단 Gemini API를 사용하여 정교한 자기 발전형 AI 에이전트를 만드는 방법을 살펴볼 것이다. 이 자기 발전형 에이전트는 자율적인 문제 해결을 보여주며 성능을 동적으로 평가하고 성공과 실패로부터 학습하여 반성적 분석과 자가 수정을 통해 지속적으로 능력을 향상시킨다. 이 튜토리얼은 구조화된 코드 구현을 안내하며 메모리 관리 및 기타 메커니즘에 대해 상세히 다룬다.
이 튜토리얼에서는 구글의 첨단 Gemini API를 사용하여 정교한 자기 발전형 AI 에이전트를 만드는 방법을 살펴볼 것이다. 이 자기 발전형 에이전트는 자율적인 문제 해결을 보여주며 성능을 동적으로 평가하고 성공과 실패로부터 학습하여 반성적 분석과 자가 수정을 통해 지속적으로 능력을 향상시킨다. 이 튜토리얼은 구조화된 코드 구현을 안내하며 메모리 관리 및 기타 메커니즘에 대해 상세히 다룬다.
구글 딥마인드는 알고리즘 설계와 과학적 발견을 위해 제미니 기술을 활용한 코딩 AI 에이전트 알파이볼브를 소개했다. 전통적인 방법으로는 전문가 직관과 수동 반복에 의존하는 이러한 과정이 대규모 언어 모델(LLMs)을 활용함으로써 가속화되고 있다.
AI 에이전트들은 주로 백엔드 작업을 자동화하는데 집중해왔지만, 상호작용적인 AI 애플리케이션이 늘어남에 따라 사용자와 상호작용하는 에이전트의 필요성이 대두되었다. AG-UI 프로토콜은 이러한 문제를 해결하기 위해 개발된 오픈, 가벼운, 이벤트 기반 프로토콜이다.
바이트댄스가 DeerFlow를 공개했는데, 이는 대형 언어 모델(Large Language Models)의 기능을 도메인별 도구와 통합하여 복잡한 연구 워크플로우를 향상시키는 오픈소스 멀티 에이전트 프레임워크이다. DeerFlow는 LangChain과 LangGraph 위에 구축되어 정보 검색부터 다중 모달 콘텐츠 생성까지 협력적인 인간 중심 환경에서 고급 연구 작업을 자동화하는 구조화된, 확장 가능한 플랫폼을 제공한다.
구글이 AI 에이전트 시스템 개발 전문가를 위한 76페이지 화이트페이퍼를 발표했다. 에이전트 평가, 다중 에이전트 협업, RAG의 진화 등에 중점을 두고 에이전트를 대규모로 운영하는 데 초점을 맞췄다.
마이크로소프트의 AI 레드 팀이 에이전틱 아키텍처의 고장 모드에 대한 상세한 분류 체계를 발표했다. 이 보고서는 탄탄한 에이전틱 시스템을 설계하고 유지하려는 실무자들에게 중요한 기초 자료를 제공한다.
씨티은행의 최신 ‘에이전틱 AI 금융 및 ‘나를 대신해 해라’ 경제’ 보고서에서는 금융 서비스에서 진행 중인 중요한 패러다임 변화를 탐구한다. 이 보고서는 룰 기반 지침에 의존하는 기존 AI 시스템과는 다르게, 에이전틱 AI는 자율성을 갖추어 직접적인 인간 개입 없이 미리 예방적으로 행동하고 의사 결정을 내리며 다단계 워크플로우를 실행한다.
Anthropic사가 Claude Code를 사용한 코딩 에이전트 개발을 위한 상세한 가이드를 발표했다. Claude Code는 개발자 중심의 명령줄 인터페이스로, Claude 언어 모델을 일상적인 프로그래밍 작업에 통합하는 데 사용된다.