2025년 6월 14일 토요일
오늘의 신문
2025년 6월 14일 토요일 오늘의 신문

최신뉴스 전체보기

PARSCALE(병렬 스케일링)을 소개하는 이 인공지능 논문: 효율적이고 확장 가능한 언어 모델 배포를 위한 병렬 계산 방법

언어 모델의 성능 향상을 위해 연구자들이 모델을 확장하는데 집중함에 따라, 계산 자원이 증가하고 언어 모델의 개발 및 배포가 상당한 컴퓨팅 자원과 메모리에 의존하게 되었다. PARSCALE은 효율적이고 확장 가능한 언어 모델 배포를 위한 병렬 계산 방법을 소개한다.

2025년 5월 21일 오후 7시 36분
후단 대학 연구진, 트랜스포머 중첩에 숨겨진 원자적 어텐션 유닛을 복구하는 희소 어텐션 메커니즘 ‘Lorsa’ 소개

후단 대학 연구진은 트랜스포머 모델의 개별 어텐션 헤드를 조사하면서, 일부 헤드에서 ‘해리’ 다음에 ‘포터’와 같은 토큰을 예측하는 기능성을 확인했다. 이를 확인하는 실험으로 ‘Lorsa’라는 희소 어텐션 메커니즘을 소개했다.

2025년 5월 7일 오후 2시 07분
강화 학습 진행 상황을 평가하는 새로운 도구

IntersectionZoo는 실제 도로 교통 문제를 활용하여 깊은 강화 학습 알고리즘의 진전을 테스트하는 벤치마킹 도구이다.

2025년 5월 5일 오후 4시 00분MIT News
LLM 에이전트 훈련이 더 안정화: StarPO-S와 RAGEN 소개로 다중 턴 추론과 강화 학습 붕괴 대응하는 연구진

대형 언어 모델(Large language models, LLM)이 상호작용 환경에서 자율 에이전트로 훈련받을 때 중요한 도전에 직면하고 있다. 순차적 의사 결정, 교차 턴 메모리 유지, 환경적 피드백에 대한 적응 등이 필요한데, 이는 효과적인 계획 보조자, 로봇 응용 프로그램, 경험을 통해 자가 개선할 수 있는 지도 에이전트 개발에 중요하다. 이에 연구진은 StarPO-S와 RAGEN을 도입하여 이러한 도전을 대응하고 있다.

2025년 5월 2일 오전 2시 31분
중국 AI 논문, 대규모 추론 언어 모델이 동적 초기 종료를 달성하는 훈련 무료 접근 방식 DEER 제안

중국의 AI 논문은 대규모 추론 언어 모델이 추론 중 동적 초기 종료를 달성할 수 있는 DEER라는 훈련 무료 접근 방식을 제안했다. 최근 대규모 추론 언어 모델의 발전으로 CoT 생성 길이가 확장되면서 복잡한 문제 해결 능력이 크게 향상되었지만, 지나치게 긴 CoT 시퀀스 생성은 계산 효율성과 대기 시간이 증가한다.

2025년 4월 26일 오후 6시 16분
레이블 없이 학습 가능한 LLMs: Tsinghua 대학과 상해 AI 연구소 연구진, 레이블이 없는 데이터를 사용하여 자가 진화 언어 모델을 가능하게 하는 테스트 시간 강화 학습(TTRL) 소개

대부분의 대형 언어 모델(LLMs)은 감독된 데이터 파이프라인에 근본적으로 의존하고 있지만, Tsinghua 대학과 상해 AI 연구소 연구진은 테스트 시간 강화 학습(TTRL)을 도입하여 레이블이 없는 데이터를 사용하여 자가 진화 언어 모델을 가능하게 했다. 이는 감독 없이 학습이 가능한 새로운 방법이다.

2025년 4월 23일 오전 1시 37분
EC-DIT: 스케일링 디퓨전 트랜스포머와 적응적 전문가 선택 라우팅

디퓨전 트랜스포머를 스케일업하여 수십억 개의 파라미터로 확장하는 것이 유망하나, 현재 크기 이상으로 스케일링하는 효과는 여전히 탐구 중이며 어렵다. EC-DIT는 이미지 생성의 계산적 이질성을 명시적으로 이용하여 전문가 선택 라우팅을 사용하는 디퓨전 트랜스포머용 새로운 MoE 모델을 개발한다. EC-DIT는 입력 텍스트를 이해하고 해당 이미지 패치를 생성하기 위해 할당된 계산을 적응적으로 최적화하는 방법을 학습한다.

2025년 4월 15일 오전 12시 00분Apple
과학자들이 더 정확한 예측을 할 수 있도록 도와주는 검증 기술

MIT 연구진은 날씨 예측이나 대기 오염 지도 작성과 같은 공간적 요소를 갖는 예측을 평가하기 위한 새로운 접근 방식을 개발했다.

2025년 2월 7일 오전 12시 00분MIT News