
비디오 생성을 위한 세밀한 제어는 광고, 영화 제작, 대화형 엔터테인먼트 시장에서의 확산을 위해 중요한 장벽이다. 텍스트 프롬프트는 제어의 주요 수단이지만 동적인 움직임을 명확히 하는 데 한계가 있다.
비디오 생성을 위한 세밀한 제어는 광고, 영화 제작, 대화형 엔터테인먼트 시장에서의 확산을 위해 중요한 장벽이다. 텍스트 프롬프트는 제어의 주요 수단이지만 동적인 움직임을 명확히 하는 데 한계가 있다.
VLM-R³는 시각과 언어 정보를 통합하여 기계가 다이어그램 내의 수학 문제 해결, 사진에서의 표지판 해석, 과학적 차트 해석 등 다중 모달 추론 능력을 갖추도록 돕는 프레임워크이다. 이는 인간의 사고과정을 모방하는데 도움이 되며 시각적 해석과 논리적 진행이 필요한 작업에 적합하다.
Mistral AI가 최신 시리즈인 Magistral을 소개했다. 이는 추론에 최적화된 대형 언어 모델(Large Language Models)로 LLM 능력 발전의 중요한 한 걸음이다. Magistral 시리즈에는 Apache 2.0 라이선스 하에 공개된 24B-파라미터의 Magistral Small과 기업용 Magistral Medium이 포함되어 있다.
멀티 에이전트 시스템은 여러 대형 언어 모델을 조정하여 복잡한 문제를 해결하는 데 중요해지고 있다. 단일 모델의 관점에 의존하는 대신, 이러한 시스템은 역할을 에이전트 사이에 분배하여 각각이 고유한 기능을 기여하게 한다. 이렇게 노동 분업이 시스템의 분석 및 응답 능력을 향상시킨다.
웹 자동화 에이전트는 인공지능 분야에서 점점 더 주목받고 있는데, 이는 그들이 디지털 환경에서 인간과 유사한 작업을 수행할 수 있는 능력 때문이다. 이러한 에이전트들은 그래픽 사용자 인터페이스(GUI)를 통해 웹사이트와 상호작용하며, 클릭, 타이핑, 다중 웹 페이지 탐색 등과 같은 인간의 행동을 모방한다. WebChoreArena 벤치마크는 에이전트에게 메모리 집중적이고 멀티페이지 작업을 제공하여 도전한다.
LLM으로 구동되는 AI 에이전트는 CRM과 같은 복잡한 비즈니스 업무를 처리하는 데 큰 잠재력을 보여준다. 그러나 실제 세계에서의 효과를 평가하는 것은 공개적이고 현실적인 비즈니스 데이터의 부족으로 어렵다. 기존의 벤치마크는 종종 간단한 일회성 상호작용이나 고객 서비스와 같은 좁은 응용에 초점을 맞추어 실제 업무를 놓치고 있다.
NovelSeek는 인공지능 도구들이 특정 작업을 처리하는 데 사용되는 반면, 보다 복잡하고 데이터 중심의 문제에 직면하면 발견 속도가 느려질 수 있다는 문제를 해결하기 위해 가설 생성부터 실험 검증까지 자율적으로 수행하는 통합 멀티 에이전트 프레임워크를 소개한다.
대규모 언어 모델(Large language models, LLMs)은 많은 AI 기반 서비스를 구동하지만 추론 중의 계산 비용이 큰 과제로 남아있었습니다. 본 논문은 WINA라는 훈련 무료 희소 활성화 프레임워크를 소개하며, 계산 효율성과 출력 품질의 균형을 최적화하는 것이 중요한 연구 분야임을 강조합니다.
이 논문은 인공지능의 추론 작업이 효율적이고 확장 가능한 문제 해결을 위한 ARM과 Ada-GRPO와 같은 적응 추론 모델을 소개합니다. 대형 언어 모델이 논리 추론의 다단계를 모방하려는 노력 중에 존재하는데, 이 논리 추론 작업은 상식 이해, 수학 문제 해결 및 상징적 추론과 같은 인공지능의 기본적인 측면을 포함합니다.
Apple과 Duke 연구진이 속도와 정확도를 향상시키기 위해 LLM이 중간 답변을 제공할 수 있는 강화 학습 접근 방식을 소개했다. 일반적인 “생각한 후에 대답” 방법은 응답 시간을 늦추고 챗봇과 같은 실시간 상호작용을 방해할 수 있으며, 이전 추론 단계의 오류가 최종 답변을 잘못 이끌 수 있는 위험을 안고 있다.
이 AI 논문은 웹 네비게이션 에이전트를 구축하는 복잡성과 사용자 목표 해석, 웹사이트 구조 이해, 다단계 결정 등의 작업을 필요로 하는 것에 초점을 맞추고 있다.
다중 모달 대형 언어 모델(Multi-modal large language models, MLLMs)은 다양한 시각적 작업을 처리할 수 있는 다재다능한 AI 어시스턴트로 큰 발전을 이루었다. 그러나 이러한 MLLM들을 격리된 디지턀 엔티티로 배치하는 것은 그들의 잠재력을 제한한다. Meta AI는 Multi-SpatialMLLM을 소개하며 현재 MLLMs의 공간적 추론 결함을 극복하고 실제 응용프로그램에 통합하는 데 도움이 되는 것을 목표로 한다.
복잡한 데이터 기반 작업을 처리하는데 강력한 도구인 신경망은 종종 차량 라우팅이나 작업 일정 등 엄격한 제약 하에서 이산적인 결정을 내리는 데 어려움을 겪습니다. 이러한 문제들을 해결하기 위해 연구된 새로운 AI 프레임워크인 Differentiable MCMC 레이어를 소개한 논문입니다.
MLLM은 시각적 콘텐츠의 풍부함과 언어의 논리를 결합하는 모델을 만드는 것이 핵심. 그러나 두 영역을 효과적으로 연결하는 것에 어려움을 겪어 복잡한 추론 작업에서 성능 제한. 이 논문은 GRIT라는 방법을 소개하여 이미지와 텍스트를 교차시켜 복잡한 추론 작업에서의 성능을 향상시킴.
대형 언어 모델(LLMs)이 협업적으로 작동할 수 있는 방법들 중 하나로 다중 에이전트 시스템이 탐구되고 있다. LLMs를 기반으로 한 다중 에이전트 시스템은 작업을 분할하고 동시에 작업하여 어려운 문제를 조정하는 잠재력을 갖고 있으며, 실시간 응용 프로그램에서 효율성을 높이고 지연 시간을 줄일 수 있는 잠재력을 갖고 있다.
Magentic-UI는 복잡한 웹 작업을 처리하고 다단계 계획과 브라우저 사용이 필요한 작업을 사람들과 협력하여 완료하는 오픈 소스 에이전트 프로토타입이다.
대형 추론 모델인 OpenAI의 o1, o3, DeepSeek-R1, Grok 3.5, Gemini 2.5 Pro는 자체 수정, 되감기, 검증과 같은 고급 행동을 보여주며 “aha moments”로 알려진 강력한 능력을 나타냈다. 이러한 행동들은 지도된 미세 조정 없이 결과 중심 강화 학습을 통해 나타났다.
언어 모델의 구조적 트레이드오프를 다루는 기술. 트랜스포머 아키텍처의 성능과 효율성을 균형 있게 유지하면서 장문맥 시나리오에서의 계산 복잡성을 줄이는 방법에 대한 논의.
멀티모달 수학적 추론은 기계가 텍스트 정보와 다이어그램, 그림과 같은 시각적 구성요소를 포함한 문제를 해결할 수 있게 합니다. 이는 언어 이해와 시각 해석을 결합하여 복잡한 수학적 맥락을 이해하는 것을 요구합니다. 이 능력은 교육, 자동화된 지도, 문서 분석에서 중요한데, 문제들은 종종 텍스트와 시각적 요소를 섞어 제시됩니다.
언어 모델의 성능 향상을 위해 연구자들이 모델을 확장하는데 집중함에 따라, 계산 자원이 증가하고 언어 모델의 개발 및 배포가 상당한 컴퓨팅 자원과 메모리에 의존하게 되었다. PARSCALE은 효율적이고 확장 가능한 언어 모델 배포를 위한 병렬 계산 방법을 소개한다.
기존 생성 모델은 대규모 고품질 데이터셋에 의존하는데, Meta AI가 발표한 역순 샘플링 기술은 이를 극복하고 데이터 부족 상황에서도 보상 주도적 생성 모델링을 가능하게 합니다.
AI는 언어 처리, 수학, 코드 생성 분야에서 발전했지만 물리적 환경으로 확장하는 것은 여전히 어렵다. 물리 AI는 동적인 실제 환경에서 지각, 이해, 행동하는 시스템을 개발하여 이 간극을 줄이려고 한다. 텍스트나 기호를 처리하는 기존 AI와 달리 물리 AI는 주로 비디오와 같은 감각적 입력과 상호작용한다.
LLM 기반 에이전트는 복잡한 작업을 처리하고 여러 역할을 수행하기 때문에 다양한 응용 분야에서 점점 더 사용되고 있습니다. 이러한 에이전트의 핵심 구성 요소 중 하나인 메모리는 정보를 저장하고 회상하며 과거 지식을 반영하고 신중한 결정을 내리는 데 중요한 역할을 합니다. 메모리는 장기간 상호 작용이나 역할 연기와 관련된 작업에서 과거 경험을 포착함으로써 핵심적인 역할을 합니다.
Meta가 KernelLLM을 소개했습니다. 이는 PyTorch 모듈을 효율적인 Triton GPU 커널로 번역하는 8억 개의 파라미터를 가진 언어 모델로, GPU 프로그래밍의 장벽을 낮추기 위한 노력입니다.
최신 데이터 시스템에 대한 핵심 요구 사항 중 하나는 고차원 벡터 표현을 검색하는 능력이 되었다. 이러한 벡터 표현은 딥러닝 모델에 의해 생성되며 데이터의 의미론적 및 문맥적 의미를 포착한다. 이를 통해 시스템은 정확한 일치가 아닌 관련성과 유사성에 기반한 결과를 검색할 수 있다.
BLIP3-o는 CLIP 임베딩과 플로우 매칭을 활용한 멀티모달 모델로, 이미지 이해 및 생성에 사용됩니다. 시각과 언어를 연결하는 관심이 높아지면서, 이미지 인식과 생성 기능을 통합한 시스템에 대한 연구가 확대되고 있습니다.
VLM은 일반 목적의 AI 시스템 구축에 중요하며, 시각적 및 텍스트 데이터를 통합함으로써 다중 모달 추론, 이미지 편집, GUI 에이전트, 로봇공학 등을 발전시키고 있음. 그러나 인간의 능력에 아직 미치지 못하는 부분이 있음.
기계 학습 시스템이 추천 엔진부터 자율 시스템까지 다양한 응용 프로그램에서 중요해지면서, 이러한 시스템들의 환경 지속 가능성에 대한 필요성이 증가하고 있습니다. CATransformers는 AI 모델과 하드웨어를 지속 가능한 엣지 배포를 위해 공동 최적화하는 탄소 인식 기계 학습 프레임워크입니다.
OpenAI가 262명 의사와 협력하여 개발한 HealthBench는 대형 언어 모델의 성능과 안전성을 현실적인 의료 시나리오에서 측정하는 오픈소스 평가 프레임워크이다. 기존 벤치마크의 한계를 극복하기 위해 실제 적용 가능성, 전문가 검증, 진단 범위에 초점을 맞추고 있다.
AI 에이전트들은 주로 백엔드 작업을 자동화하는데 집중해왔지만, 상호작용적인 AI 애플리케이션이 늘어남에 따라 사용자와 상호작용하는 에이전트의 필요성이 대두되었다. AG-UI 프로토콜은 이러한 문제를 해결하기 위해 개발된 오픈, 가벼운, 이벤트 기반 프로토콜이다.
시퀀스 모델은 언어, 시계열, 신호와 같은 시간 구조 데이터를 처리하기 위해 설계되었으며, 내부적으로 시간 관계를 관리하여 일관된 출력을 생성함. 이 AI 논문은 시퀀스 모델의 메모리 활용을 측정하는 효과적인 상태 크기(ESS) 메트릭을 제시하며 성능 최적화에 도움을 줌.
화웨이가 Pangu Ultra MoE를 소개했다. 이 모델은 Ascend NPUs에서 효율적으로 훈련되어 718B-파라미터의 희소 언어 모델로, 시뮬레이션 주도 아키텍처와 시스템 수준 최적화를 활용한다.
바이트댄스가 DeerFlow를 공개했는데, 이는 대형 언어 모델(Large Language Models)의 기능을 도메인별 도구와 통합하여 복잡한 연구 워크플로우를 향상시키는 오픈소스 멀티 에이전트 프레임워크이다. DeerFlow는 LangChain과 LangGraph 위에 구축되어 정보 검색부터 다중 모달 콘텐츠 생성까지 협력적인 인간 중심 환경에서 고급 연구 작업을 자동화하는 구조화된, 확장 가능한 플랫폼을 제공한다.
컴퓨터 과학 연구는 논리, 엔지니어링 및 데이터 기반 실험을 포함한 다학제적 노력으로 진화했습니다. 컴퓨팅 시스템이 일상생활에 깊이 편입되면서 연구는 대규모이며 실시간 시스템에 초점을 맞추고 있습니다. 이러한 시스템은 대규모 데이터 세트에서 학습하고 다양한 사용자 요구에 적응해야 합니다.
UCLA, UW-Madison, Adobe 연구진이 ‘X-Fusion’을 소개하며 언어 모델에 시각 정보를 추가하는 연구를 발표. 텍스트 이해 능력을 잃지 않으면서 시각 정보를 통합하는 AI 모델의 중요성 강조.
NVIDIA가 코드 추론과 문제 해결을 위해 고안된 고성능 대형 언어 모델 세트인 OCR 모델을 Apache 2.0 라이선스로 오픈 소스화했다. 32B, 14B, 7B 버전은 최고 성능을 자랑하며 OAI 모델을 능가하는 벤치마킹 결과를 보였다.
구글이 연례 I/O 개발자 컨퍼런스 직전에 플래그십 AI 모델인 Gemini 2.5 Pro (I/O 에디션)의 초기 미리보기를 공개했다. 이번 버전은 코딩 정확도, 웹 애플리케이션 생성, 비디오 이해 등에서 상당한 향상을 이루었으며, GPT-4 Turbo를 앞서는 성능을 보여주고 있다.
후단 대학 연구진은 트랜스포머 모델의 개별 어텐션 헤드를 조사하면서, 일부 헤드에서 ‘해리’ 다음에 ‘포터’와 같은 토큰을 예측하는 기능성을 확인했다. 이를 확인하는 실험으로 ‘Lorsa’라는 희소 어텐션 메커니즘을 소개했다.
최근 LLMs의 발전으로 자연어 이해, 추론 및 생성이 크게 향상되었지만, 이 모델들은 종종 환각을 생성하는데, 이는 신뢰성을 저해함. 높은 위험도메인에서 특히 시급하게 대응이 필요함.
NVIDIA가 파라킷 TDT 0.6B를 공개했다. 이는 6억 개의 파라미터, 상용 허용 라이센스, 놀라운 실시간 요소 (RTF) 3386을 가지고 있어 음성 AI의 성능과 접근성에서 새로운 기준을 세우고 있다.
LLM 기반 AI 시스템에서 기억은 지속적이고 일관된 상호작용을 지원하는데 중요한 역할을 한다. 이전 조사들은 LLM에 대한 기억을 탐구했지만, 메모리 기능을 지배하는 기본적인 작업에 대한 주의가 부족했다. 기억 저장, 검색, 생성과 같은 주요 구성 요소는 분리되어 연구되어 왔지만, 체계적으로 통합된 프레임워크가 필요하다.
KAIST와 DeepAuto.ai 연구팀은 UniversalRAG라는 새로운 프레임워크를 소개했습니다. 이 프레임워크는 다양한 유형의 정보를 필요로 하는 실제 시나리오에서 쿼리의 정확성을 향상시키기 위해 모달과 세분성을 동적으로 경로 지정합니다.
구글 연구진은 AMIE가 다중모달 추론을 사용하여 원격 진료에서 텍스트 이외의 이미지, 검사 결과 등을 고려해 주치의를 능가할 수 있는 능력을 갖추었다.
Meta AI가 Llama 모델에 맞게 프롬프트를 최적화하는 과정을 간편화하는 Python 패키지 ‘Llama Prompt Ops’를 출시했다. 이 오픈소스 도구는 다른 대형 언어 모델과 잘 작동하는 입력을 Llama에 최적화된 형태로 변환하여 개발자와 연구자가 프롬프트 효과를 향상시키는 데 도움을 준다.
이 튜토리얼에서는 비즈니스 응용을 위해 다양한 비전 기반 모델을 구현하는 방법을 탐색합니다. 이론적 측면보다는 실용적인 코드 구현, 기술적 세부사항, 비즈니스 사례에 중점을 둘 것입니다.
Meta와 부즈 앨런이 Meta의 오픈소스 대형 언어 모델 ‘Llama 3.2’의 맞춤형 인스턴스인 Space Llama을 국제우주정거장(ISS) 미국 국립 연구소에 배치했다. 이는 우주에서 자율 AI 시스템을 가능하게 하는 중요한 한걸음이며, LLM의 실용적인 통합 사례 중 하나로 주목받고 있다.
대형 언어 모델(Large language models, LLM)이 상호작용 환경에서 자율 에이전트로 훈련받을 때 중요한 도전에 직면하고 있다. 순차적 의사 결정, 교차 턴 메모리 유지, 환경적 피드백에 대한 적응 등이 필요한데, 이는 효과적인 계획 보조자, 로봇 응용 프로그램, 경험을 통해 자가 개선할 수 있는 지도 에이전트 개발에 중요하다. 이에 연구진은 StarPO-S와 RAGEN을 도입하여 이러한 도전을 대응하고 있다.
대규모 언어 모델(LLM) 기반 에이전트를 운영 환경에 배치하면 종종 신뢰성 문제가 발생한다. 에이전트의 실패 원인을 정확히 식별하고 선행적인 자가 수정 메커니즘을 구현하는 것이 중요하다. Atla의 최근 분석에 따르면, τ-Bench 벤치마크에서 얻은 세부적인 인사이트는 에이전트의 실패에 대해 전통적인 집계 성공 지표를 넘어 Atla의 EvalToolbox 접근법을 강조한다.
OpenPipe는 ART·E (이메일 자율 검색 도구)를 소개했는데, 이는 인박스 내용을 기반으로 사용자 질문에 답변하는 데 중점을 둔 오픈소스 연구 에이전트로, 정확성, 응답성 및 계산 효율성에 초점을 맞추고 있다. ART·E는 강화 학습을 통해 대형 언어 모델 에이전트를 튜닝하여 전문화된, 고 신호 사용 사례에 적합성을 증명하고 있다.
ViSMaP는 짧은 비디오와 캡션으로 구성된 데이터셋에서 학습된 비디오 캡션 모델이 일반적으로 산책이나 대화와 같은 기본 동작을 설명하는 데는 용이하지만, Vlog, 스포츠 이벤트, 영화와 같이 긴 형식의 비디오의 복잡성에는 어려움이 있습니다. ViSMaP는 메타 프롬프팅과 짧은 형식 데이터셋을 사용하여 이러한 문제를 해결합니다.
대형 언어 모델의 사전 훈련 효율과 일반화는 기본 훈련 말뭉치의 품질과 다양성에 크게 영향을 받는다. 전통적인 데이터 정제 파이프라인은 종종 품질 필터링 다음에 도메인 균형을 적용하여 품질과 다양성을 분리된 목표로 취급한다. 이러한 순차적 최적화는 이러한 요소들 간의 복잡한 상호 의존성을 간과한다. 고품질 데이터셋은 종종…
중국의 AI 논문은 대규모 추론 언어 모델이 추론 중 동적 초기 종료를 달성할 수 있는 DEER라는 훈련 무료 접근 방식을 제안했다. 최근 대규모 추론 언어 모델의 발전으로 CoT 생성 길이가 확장되면서 복잡한 문제 해결 능력이 크게 향상되었지만, 지나치게 긴 CoT 시퀀스 생성은 계산 효율성과 대기 시간이 증가한다.
연구자들은 대규모 사회 시뮬레이션을 위한 SocioVerse를 소개하며, 전통적인 방법론의 한계로부터 대안적 접근법을 모색하고 있다. LLM은 1000만 실제 사용자를 기반으로 사회 시뮬레이션을 가능케 하며, 인간 행동 연구에 혁명을 일으킬 수 있다.
대형 언어 모델(LLM)은 수학, 논리, 기획, 코딩 등의 추론 작업에서 상당한 주목을 받았다. 그러나 이러한 모델을 실제 상황에 적용할 때 중요한 도전 과제가 발생한다. 현재의 구현은 대부분 필요한 모든 정보가 명확하게 제공된다는 가정 하에 작동하지만, 현실은 종종 불완전하거나 모호한 상황을 제시한다.
Microsoft Research가 MMInference를 소개하여 장문 맥락 비전-언어 모델의 사전 채우기 속도를 가속화했다. 이는 로봇공학, 자율 주행, 의료 분야에서 특히 성능을 향상시키는데 도움이 된다.
최근 대형 언어 모델의 발전으로 소프트웨어 코드를 생성, 수정, 이해하는 AI 기반 코딩 에이전트 개발이 가능해졌으나, 이러한 시스템의 평가는 주로 파이썬에 국한된 합성 또는 범위가 제한된 벤치마크로 제한되어 있습니다. AWS가 SWE-PolyBench를 소개하며 이 문제에 대처하고 있습니다.
대부분의 대형 언어 모델(LLMs)은 감독된 데이터 파이프라인에 근본적으로 의존하고 있지만, Tsinghua 대학과 상해 AI 연구소 연구진은 테스트 시간 강화 학습(TTRL)을 도입하여 레이블이 없는 데이터를 사용하여 자가 진화 언어 모델을 가능하게 했다. 이는 감독 없이 학습이 가능한 새로운 방법이다.
VoltAgent는 TypeScript 기반의 오픈 소스 프레임워크로, 모듈화된 빌딩 블록과 자율적인 에이전트를 위한 추상화를 제공하여 AI 주도 애플리케이션의 생성을 간소화합니다. 대규모 언어 모델 (LLMs), 도구 통합 및 상태 관리와 같은 복잡성을 다루기 위해 핵심 엔진을 제공합니다.
물리적 환경에서 신뢰성 있는 지능 시스템을 설계하는 것은 AI의 어려운 과제 중 하나이다. 기존 AI 시스템은 높은 수준의 표현에 의존하는 반면, 실제 세계는 잡음이 많고 예측할 수 없으며 추상화에 저항한다. 물리 지능 연구팀은 이러한 문제를 해결하기 위해 새로운 AI 프레임워크인 π-0.5를 소개했다.
인공지능을 활용한 재활용 로봇이 색상, 질감, 모양 및 로고의 패턴을 인식하여 재활용물을 분류하는 방법을 학습하고 있습니다.
Meta AI가 Perception Language Model (PLM)을 발표했다. 이 모델은 도전적인 시각 인식 작업을 해결하기 위한 오픈 및 재현 가능한 비전-언어 모델로, 과학적 투명성과 재현성을 높이는 데 기여한다.
구글이 Gemini API를 통해 접근 가능한 AI 모델인 Gemini 2.5 Flash를 소개했다. Gemini 2.0 Flash의 기초를 바탕으로 하면서 추론 능력을 향상시키고 속도와 비용 효율성에 중점을 둔다. Gemini의 주요 기능 중 하나는 조정 가능한 사고 예산과 하이브리드 추론이다.