
도쿄 과학 연구소가 아마존 세이지메이커 하이퍼팟을 사용하여 70억 개의 파라미터를 가진 일본어 능력이 향상된 대형 언어 모델 Llama 3.3 Swallow을 성공적으로 훈련시켰다. 이 모델은 GPT-4o-mini 및 다른 선두 모델을 능가하는 일본어 작업에서 우수한 성능을 보여준다. 이 기술 보고서는 프로젝트 중 개발된 훈련 인프라, 최적화 및 모범 사례를 상세히 설명한다.
도쿄 과학 연구소가 아마존 세이지메이커 하이퍼팟을 사용하여 70억 개의 파라미터를 가진 일본어 능력이 향상된 대형 언어 모델 Llama 3.3 Swallow을 성공적으로 훈련시켰다. 이 모델은 GPT-4o-mini 및 다른 선두 모델을 능가하는 일본어 작업에서 우수한 성능을 보여준다. 이 기술 보고서는 프로젝트 중 개발된 훈련 인프라, 최적화 및 모범 사례를 상세히 설명한다.
OpenSearch는 다양한 제3자 머신러닝(ML) 커넥터를 제공하여 이를 지원합니다. 이 포스트에서는 Amazon Comprehend 커넥터와 Amazon Bedrock 커넥터 두 가지를 소개합니다. Amazon Comprehend 커넥터를 사용하여 LangDetect API를 호출해 문서의 언어를 감지하는 방법과 Amazon Bedrock 커넥터를 사용하여 Amazon Titan Text Embeddings v2 모델을 호출하여 문서로부터 임베딩을 생성하고 의미 검색을 수행하는 방법을 보여줍니다.
LlamaIndex 프레임워크를 활용하여 에이전틱 RAG 애플리케이션을 구축하는 예시를 소개합니다. 이 애플리케이션은 Mistral Large 2 FM을 활용해 에이전트 플로우에 대한 응답을 생성하여 연구 도구로 활용됩니다.
아마존 노바 캔버스가 고급 이미지 생성 기술을 통해 실제 비즈니스 문제를 해결하는 방법을 탐구합니다. 이 기술의 강력함과 유연성을 보여주는 인테리어 디자인 및 제품 사진 촬영 두 가지 구체적인 사용 사례에 초점을 맞춥니다.
미디어 및 엔터테인먼트 산업에서 마케팅 캠페인의 효과를 이해하고 예측하는 것은 성공에 중요하다. 마케팅 캠페인은 성공적인 비즈니스의 주요 동력으로 작용하며, 새로운 고객을 유치하고 기존 고객을 유지하며 수익을 증대하는 데 중요한 역할을 한다. 그러나 캠페인을 시작하는 것만으로는 충분하지 않다. 이들의 영향력을 극대화하고 성공을 도와주기 위해…
이 포스트에서는 동영상 온디맨드 사례를 활용해 개별 사용자를 위한 맞춤형 아웃리치 이메일을 생성하는 방법을 Amazon Personalize 및 Amazon Bedrock을 사용하여 보여줍니다. 이 개념은 전자 상거래 및 디지털 마케팅 사례와 같은 다른 영역에도 적용할 수 있습니다.